Subversion Repositories public iLand

Rev

Rev 707 | Rev 714 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1
 
671 werner 2
/********************************************************************************************
3
**    iLand - an individual based forest landscape and disturbance model
4
**    http://iland.boku.ac.at
5
**    Copyright (C) 2009-  Werner Rammer, Rupert Seidl
6
**
7
**    This program is free software: you can redistribute it and/or modify
8
**    it under the terms of the GNU General Public License as published by
9
**    the Free Software Foundation, either version 3 of the License, or
10
**    (at your option) any later version.
11
**
12
**    This program is distributed in the hope that it will be useful,
13
**    but WITHOUT ANY WARRANTY; without even the implied warranty of
14
**    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
**    GNU General Public License for more details.
16
**
17
**    You should have received a copy of the GNU General Public License
18
**    along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
********************************************************************************************/
117 Werner 20
#include "global.h"
21
#include "tree.h"
3 Werner 22
 
83 Werner 23
#include "grid.h"
3 Werner 24
 
83 Werner 25
#include "stamp.h"
90 Werner 26
#include "species.h"
189 iland 27
#include "resourceunit.h"
151 iland 28
#include "model.h"
468 werner 29
#include "snag.h"
38 Werner 30
 
110 Werner 31
// static varaibles
106 Werner 32
FloatGrid *Tree::mGrid = 0;
151 iland 33
HeightGrid *Tree::mHeightGrid = 0;
40 Werner 34
int Tree::m_statPrint=0;
48 Werner 35
int Tree::m_statAboveZ=0;
105 Werner 36
int Tree::m_statCreated=0;
40 Werner 37
int Tree::m_nextId=0;
38
 
697 werner 39
/** @class Tree
40
    @ingroup core
41
    A tree is the basic simulation entity of iLand and represents a single tree.
42
    Trees in iLand are designed to be lightweight, thus the list of stored properties is limited. Basic properties
43
    are dimensions (dbh, height), biomass pools (stem, leaves, roots), the reserve NPP pool. Additionally, the location and species are stored.
44
    A Tree has a height of at least 4m; trees below this threshold are covered by the regeneration layer (see Sapling).
45
    Trees are stored in lists managed at the resource unit level.
158 werner 46
 
697 werner 47
  */
257 werner 48
 
158 werner 49
/** get distance and direction between two points.
50
  returns the distance (m), and the angle between PStart and PEnd (radians) in referenced param rAngle. */
51
float dist_and_direction(const QPointF &PStart, const QPointF &PEnd, float &rAngle)
151 iland 52
{
158 werner 53
    float dx = PEnd.x() - PStart.x();
54
    float dy = PEnd.y() - PStart.y();
55
    float d = sqrt(dx*dx + dy*dy);
56
    // direction:
57
    rAngle = atan2(dx, dy);
58
    return d;
151 iland 59
}
60
 
158 werner 61
 
110 Werner 62
// lifecycle
3 Werner 63
Tree::Tree()
64
{
149 werner 65
    mDbh = mHeight = 0;
66
    mRU = 0; mSpecies = 0;
169 werner 67
    mFlags = mAge = 0;
276 werner 68
    mOpacity=mFoliageMass=mWoodyMass=mCoarseRootMass=mFineRootMass=mLeafArea=0.;
159 werner 69
    mDbhDelta=mNPPReserve=mLRI=mStressIndex=0.;
264 werner 70
    mLightResponse = 0.;
106 Werner 71
    mId = m_nextId++;
105 Werner 72
    m_statCreated++;
3 Werner 73
}
38 Werner 74
 
407 werner 75
float Tree::crownRadius() const
76
{
77
    Q_ASSERT(mStamp!=0);
78
    return mStamp->crownRadius();
79
}
80
 
476 werner 81
float Tree::biomassBranch() const
82
{
83
    return mSpecies->biomassBranch(mDbh);
84
}
85
 
158 werner 86
void Tree::setGrid(FloatGrid* gridToStamp, Grid<HeightGridValue> *dominanceGrid)
3 Werner 87
{
158 werner 88
    mGrid = gridToStamp; mHeightGrid = dominanceGrid;
3 Werner 89
}
90
 
667 werner 91
// calculate the thickness of the bark of the tree
92
double Tree::barkThickness() const
93
{
94
    return mSpecies->barkThickness(mDbh);
95
}
96
 
125 Werner 97
/// dumps some core variables of a tree to a string.
98
QString Tree::dump()
99
{
100
    QString result = QString("id %1 species %2 dbh %3 h %4 x/y %5/%6 ru# %7 LRI %8")
159 werner 101
                            .arg(mId).arg(species()->id()).arg(mDbh).arg(mHeight)
156 werner 102
                            .arg(position().x()).arg(position().y())
125 Werner 103
                            .arg(mRU->index()).arg(mLRI);
104
    return result;
105
}
3 Werner 106
 
129 Werner 107
void Tree::dumpList(DebugList &rTargetList)
108
{
159 werner 109
    rTargetList << mId << species()->id() << mDbh << mHeight  << position().x() << position().y()   << mRU->index() << mLRI
276 werner 110
                << mWoodyMass << mCoarseRootMass << mFoliageMass << mLeafArea;
129 Werner 111
}
112
 
38 Werner 113
void Tree::setup()
114
{
106 Werner 115
    if (mDbh<=0 || mHeight<=0)
38 Werner 116
        return;
117
    // check stamp
159 werner 118
    Q_ASSERT_X(species()!=0, "Tree::setup()", "species is NULL");
119
    mStamp = species()->stamp(mDbh, mHeight);
505 werner 120
    if (!mStamp) {
121
        throw IException("Tree::setup() with invalid stamp!");
122
    }
110 Werner 123
 
159 werner 124
    mFoliageMass = species()->biomassFoliage(mDbh);
276 werner 125
    mCoarseRootMass = species()->biomassRoot(mDbh); // coarse root (allometry)
126
    mFineRootMass = mFoliageMass * species()->finerootFoliageRatio(); //  fine root (size defined  by finerootFoliageRatio)
159 werner 127
    mWoodyMass = species()->biomassWoody(mDbh);
110 Werner 128
 
137 Werner 129
    // LeafArea[m2] = LeafMass[kg] * specificLeafArea[m2/kg]
159 werner 130
    mLeafArea = mFoliageMass * species()->specificLeafArea();
276 werner 131
    mOpacity = 1. - exp(- Model::settings().lightExtinctionCoefficientOpacity * mLeafArea / mStamp->crownArea());
132
    mNPPReserve = (1+species()->finerootFoliageRatio())*mFoliageMass; // initial value
137 Werner 133
    mDbhDelta = 0.1; // initial value: used in growth() to estimate diameter increment
376 werner 134
 
38 Werner 135
}
39 Werner 136
 
388 werner 137
void Tree::setAge(const int age, const float treeheight)
138
{
139
    mAge = age;
140
    if (age==0) {
141
        // estimate age using the tree height
142
        mAge = mSpecies->estimateAge(treeheight);
143
    }
144
}
145
 
110 Werner 146
//////////////////////////////////////////////////
147
////  Light functions (Pattern-stuff)
148
//////////////////////////////////////////////////
149
 
70 Werner 150
#define NOFULLDBG
77 Werner 151
//#define NOFULLOPT
39 Werner 152
 
40 Werner 153
 
158 werner 154
void Tree::applyLIP()
77 Werner 155
{
144 Werner 156
    if (!mStamp)
157
        return;
106 Werner 158
    Q_ASSERT(mGrid!=0 && mStamp!=0 && mRU!=0);
156 werner 159
    QPoint pos = mPositionIndex;
106 Werner 160
    int offset = mStamp->offset();
77 Werner 161
    pos-=QPoint(offset, offset);
162
 
163
    float local_dom; // height of Z* on the current position
164
    int x,y;
401 werner 165
    float value, z, z_zstar;
106 Werner 166
    int gr_stamp = mStamp->size();
705 werner 167
 
106 Werner 168
    if (!mGrid->isIndexValid(pos) || !mGrid->isIndexValid(pos+QPoint(gr_stamp, gr_stamp))) {
407 werner 169
        // this should not happen because of the buffer
77 Werner 170
        return;
171
    }
705 werner 172
    int grid_y = pos.y();
77 Werner 173
    for (y=0;y<gr_stamp; ++y) {
403 werner 174
 
705 werner 175
        float *grid_value_ptr = mGrid->ptr(pos.x(), grid_y);
176
        int grid_x = pos.x();
177
        for (x=0;x<gr_stamp;++x, ++grid_x, ++grid_value_ptr) {
77 Werner 178
            // suppose there is no stamping outside
106 Werner 179
            value = (*mStamp)(x,y); // stampvalue
705 werner 180
            //if (value>0.f) {
181
                local_dom = (*mHeightGrid)(grid_x/cPxPerHeight, grid_y/cPxPerHeight).height;
182
                z = std::max(mHeight - (*mStamp).distanceToCenter(x,y), 0.f); // distance to center = height (45° line)
183
                z_zstar = (z>=local_dom)?1.f:z/local_dom;
184
                value = 1. - value*mOpacity * z_zstar; // calculated value
185
                value = std::max(value, 0.02f); // limit value
77 Werner 186
 
705 werner 187
                *grid_value_ptr *= value;
188
            //}
403 werner 189
 
77 Werner 190
        }
403 werner 191
        grid_y++;
77 Werner 192
    }
193
 
194
    m_statPrint++; // count # of stamp applications...
195
}
196
 
155 werner 197
/// helper function for gluing the edges together
198
/// index: index at grid
199
/// count: number of pixels that are the simulation area (e.g. 100m and 2m pixel -> 50)
200
/// buffer: size of buffer around simulation area (in pixels)
295 werner 201
inline int torusIndex(int index, int count, int buffer, int ru_index)
155 werner 202
{
295 werner 203
    return buffer + ru_index + (index-buffer+count)%count;
155 werner 204
}
62 Werner 205
 
155 werner 206
 
207
/** Apply LIPs. This "Torus" functions wraps the influence at the edges of a 1ha simulation area.
208
  */
158 werner 209
void Tree::applyLIP_torus()
155 werner 210
{
211
    if (!mStamp)
212
        return;
213
    Q_ASSERT(mGrid!=0 && mStamp!=0 && mRU!=0);
295 werner 214
    int bufferOffset = mGrid->indexAt(QPointF(0.,0.)).x(); // offset of buffer
387 werner 215
    QPoint pos = QPoint((mPositionIndex.x()-bufferOffset)%cPxPerRU  + bufferOffset,
216
                        (mPositionIndex.y()-bufferOffset)%cPxPerRU + bufferOffset); // offset within the ha
295 werner 217
    QPoint ru_offset = QPoint(mPositionIndex.x() - pos.x(), mPositionIndex.y() - pos.y()); // offset of the corner of the resource index
155 werner 218
 
219
    int offset = mStamp->offset();
220
    pos-=QPoint(offset, offset);
221
 
222
    float local_dom; // height of Z* on the current position
223
    int x,y;
224
    float value;
225
    int gr_stamp = mStamp->size();
226
    int grid_x, grid_y;
227
    float *grid_value;
228
    if (!mGrid->isIndexValid(pos) || !mGrid->isIndexValid(pos+QPoint(gr_stamp, gr_stamp))) {
229
        // todo: in this case we should use another algorithm!!! necessary????
230
        return;
231
    }
407 werner 232
    float z, z_zstar;
155 werner 233
    int xt, yt; // wraparound coordinates
234
    for (y=0;y<gr_stamp; ++y) {
235
        grid_y = pos.y() + y;
387 werner 236
        yt = torusIndex(grid_y, cPxPerRU,bufferOffset, ru_offset.y()); // 50 cells per 100m
155 werner 237
        for (x=0;x<gr_stamp;++x) {
238
            // suppose there is no stamping outside
239
            grid_x = pos.x() + x;
387 werner 240
            xt = torusIndex(grid_x,cPxPerRU,bufferOffset, ru_offset.x());
155 werner 241
 
387 werner 242
            local_dom = mHeightGrid->valueAtIndex(xt/cPxPerHeight,yt/cPxPerHeight).height;
407 werner 243
 
244
            z = std::max(mHeight - (*mStamp).distanceToCenter(x,y), 0.f); // distance to center = height (45° line)
245
            z_zstar = (z>=local_dom)?1.f:z/local_dom;
155 werner 246
            value = (*mStamp)(x,y); // stampvalue
407 werner 247
            value = 1. - value*mOpacity * z_zstar; // calculated value
248
            // old: value = 1. - value*mOpacity / local_dom; // calculated value
155 werner 249
            value = qMax(value, 0.02f); // limit value
250
 
251
            grid_value = mGrid->ptr(xt, yt); // use wraparound coordinates
252
            *grid_value *= value;
253
        }
254
    }
255
 
256
    m_statPrint++; // count # of stamp applications...
257
}
258
 
74 Werner 259
/** heightGrid()
260
  This function calculates the "dominant height field". This grid is coarser as the fine-scaled light-grid.
261
*/
262
void Tree::heightGrid()
263
{
264
 
387 werner 265
    QPoint p = QPoint(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight); // pos of tree on height grid
74 Werner 266
 
151 iland 267
    // count trees that are on height-grid cells (used for stockable area)
285 werner 268
    mHeightGrid->valueAtIndex(p).increaseCount();
401 werner 269
    if (mHeight > mHeightGrid->valueAtIndex(p).height)
270
        mHeightGrid->valueAtIndex(p).height=mHeight;
406 werner 271
 
272
    int r = mStamp->reader()->offset(); // distance between edge and the center pixel. e.g.: if r = 2 -> stamp=5x5
273
    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
274
    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
275
    if (index_eastwest - r < 0) { // east
410 werner 276
        mHeightGrid->valueAtIndex(p.x()-1, p.y()).height=qMax(mHeightGrid->valueAtIndex(p.x()-1, p.y()).height,mHeight);
406 werner 277
    }
278
    if (index_eastwest + r >= cPxPerHeight) {  // west
410 werner 279
        mHeightGrid->valueAtIndex(p.x()+1, p.y()).height=qMax(mHeightGrid->valueAtIndex(p.x()+1, p.y()).height,mHeight);
406 werner 280
    }
281
    if (index_northsouth - r < 0) {  // south
410 werner 282
        mHeightGrid->valueAtIndex(p.x(), p.y()-1).height=qMax(mHeightGrid->valueAtIndex(p.x(), p.y()-1).height,mHeight);
406 werner 283
    }
284
    if (index_northsouth + r >= cPxPerHeight) {  // north
410 werner 285
        mHeightGrid->valueAtIndex(p.x(), p.y()+1).height=qMax(mHeightGrid->valueAtIndex(p.x(), p.y()+1).height,mHeight);
406 werner 286
    }
287
 
288
 
401 werner 289
    // without spread of the height grid
151 iland 290
 
401 werner 291
//    // height of Z*
292
//    const float cellsize = mHeightGrid->cellsize();
293
//
294
//    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
295
//    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
296
//    int dist[9];
297
//    dist[3] = index_northsouth * 2 + 1; // south
298
//    dist[1] = index_eastwest * 2 + 1; // west
299
//    dist[5] = 10 - dist[3]; // north
300
//    dist[7] = 10 - dist[1]; // east
301
//    dist[8] = qMax(dist[5], dist[7]); // north-east
302
//    dist[6] = qMax(dist[3], dist[7]); // south-east
303
//    dist[0] = qMax(dist[3], dist[1]); // south-west
304
//    dist[2] = qMax(dist[5], dist[1]); // north-west
305
//    dist[4] = 0; // center cell
306
//    /* the scheme of indices is as follows:  if sign(ix)= -1, if ix<0, 0 for ix=0, 1 for ix>0 (detto iy), then:
307
//       index = 4 + 3*sign(ix) + sign(iy) transforms combinations of directions to unique ids (0..8), which are used above.
308
//        e.g.: sign(ix) = -1, sign(iy) = 1 (=north-west) -> index = 4 + -3 + 1 = 2
309
//    */
310
//
311
//
312
//    int ringcount = int(floor(mHeight / cellsize)) + 1;
313
//    int ix, iy;
314
//    int ring;
315
//    float hdom;
316
//
317
//    for (ix=-ringcount;ix<=ringcount;ix++)
318
//        for (iy=-ringcount; iy<=+ringcount; iy++) {
319
//        ring = qMax(abs(ix), abs(iy));
320
//        QPoint pos(ix+p.x(), iy+p.y());
321
//        if (mHeightGrid->isIndexValid(pos)) {
322
//            float &rHGrid = mHeightGrid->valueAtIndex(pos).height;
323
//            if (rHGrid > mHeight) // skip calculation if grid is higher than tree
324
//                continue;
325
//            int direction = 4 + (ix?(ix<0?-3:3):0) + (iy?(iy<0?-1:1):0); // 4 + 3*sgn(x) + sgn(y)
326
//            hdom = mHeight - dist[direction];
327
//            if (ring>1)
328
//                hdom -= (ring-1)*10;
329
//
330
//            rHGrid = qMax(rHGrid, hdom); // write value
331
//        } // is valid
332
//    } // for (y)
39 Werner 333
}
40 Werner 334
 
407 werner 335
void Tree::heightGrid_torus()
336
{
337
    // height of Z*
155 werner 338
 
407 werner 339
    QPoint p = QPoint(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight); // pos of tree on height grid
340
    int bufferOffset = mHeightGrid->indexAt(QPointF(0.,0.)).x(); // offset of buffer (i.e.: size of buffer in height-pixels)
341
    p.setX((p.x()-bufferOffset)%10 + bufferOffset); // 10: 10 x 10m pixeln in 100m
342
    p.setY((p.y()-bufferOffset)%10 + bufferOffset);
155 werner 343
 
407 werner 344
 
345
    // torus coordinates: ru_offset = coords of lower left corner of 1ha patch
346
    QPoint ru_offset =QPoint(mPositionIndex.x()/cPxPerHeight - p.x(), mPositionIndex.y()/cPxPerHeight - p.y());
347
 
348
    // count trees that are on height-grid cells (used for stockable area)
349
    HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x(),10,bufferOffset,ru_offset.x()),
350
                                                   torusIndex(p.y(),10,bufferOffset,ru_offset.y()));
351
    v.increaseCount();
352
    v.height = qMax(v.height, mHeight);
353
 
354
 
355
    int r = mStamp->reader()->offset(); // distance between edge and the center pixel. e.g.: if r = 2 -> stamp=5x5
356
    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
357
    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
358
    if (index_eastwest - r < 0) { // east
359
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x()-1,10,bufferOffset,ru_offset.x()),
360
                                                       torusIndex(p.y(),10,bufferOffset,ru_offset.y()));
410 werner 361
        v.height = qMax(v.height, mHeight);
407 werner 362
    }
363
    if (index_eastwest + r >= cPxPerHeight) {  // west
364
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x()+1,10,bufferOffset,ru_offset.x()),
365
                                                       torusIndex(p.y(),10,bufferOffset,ru_offset.y()));
410 werner 366
        v.height = qMax(v.height, mHeight);
407 werner 367
    }
368
    if (index_northsouth - r < 0) {  // south
369
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x(),10,bufferOffset,ru_offset.x()),
370
                                                       torusIndex(p.y()-1,10,bufferOffset,ru_offset.y()));
410 werner 371
        v.height = qMax(v.height, mHeight);
407 werner 372
    }
373
    if (index_northsouth + r >= cPxPerHeight) {  // north
374
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x(),10,bufferOffset,ru_offset.x()),
375
                                                       torusIndex(p.y()+1,10,bufferOffset,ru_offset.y()));
410 werner 376
        v.height = qMax(v.height, mHeight);
407 werner 377
    }
378
 
379
 
380
 
381
 
382
//    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
383
//    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
384
//    int dist[9];
385
//    dist[3] = index_northsouth * 2 + 1; // south
386
//    dist[1] = index_eastwest * 2 + 1; // west
387
//    dist[5] = 10 - dist[3]; // north
388
//    dist[7] = 10 - dist[1]; // east
389
//    dist[8] = qMax(dist[5], dist[7]); // north-east
390
//    dist[6] = qMax(dist[3], dist[7]); // south-east
391
//    dist[0] = qMax(dist[3], dist[1]); // south-west
392
//    dist[2] = qMax(dist[5], dist[1]); // north-west
393
//    dist[4] = 0; // center cell
394
//    /* the scheme of indices is as follows:  if sign(ix)= -1, if ix<0, 0 for ix=0, 1 for ix>0 (detto iy), then:
395
//       index = 4 + 3*sign(ix) + sign(iy) transforms combinations of directions to unique ids (0..8), which are used above.
396
//        e.g.: sign(ix) = -1, sign(iy) = 1 (=north-west) -> index = 4 + -3 + 1 = 2
397
//    */
398
//
399
//
400
//    int ringcount = int(floor(mHeight / cellsize)) + 1;
401
//    int ix, iy;
402
//    int ring;
403
//    float hdom;
404
//    for (ix=-ringcount;ix<=ringcount;ix++)
405
//        for (iy=-ringcount; iy<=+ringcount; iy++) {
406
//        ring = qMax(abs(ix), abs(iy));
407
//        QPoint pos(ix+p.x(), iy+p.y());
408
//        QPoint p_torus(torusIndex(pos.x(),10,bufferOffset,ru_offset.x()),
409
//                       torusIndex(pos.y(),10,bufferOffset,ru_offset.y()));
410
//        if (mHeightGrid->isIndexValid(p_torus)) {
411
//            float &rHGrid = mHeightGrid->valueAtIndex(p_torus.x(),p_torus.y()).height;
412
//            if (rHGrid > mHeight) // skip calculation if grid is higher than tree
413
//                continue;
414
//            int direction = 4 + (ix?(ix<0?-3:3):0) + (iy?(iy<0?-1:1):0); // 4 + 3*sgn(x) + sgn(y)
415
//            hdom = mHeight - dist[direction];
416
//            if (ring>1)
417
//                hdom -= (ring-1)*10;
418
//
419
//            rHGrid = qMax(rHGrid, hdom); // write value
420
//        } // is valid
421
//    } // for (y)
422
}
423
 
424
 
425
 
158 werner 426
void Tree::readLIF()
40 Werner 427
{
106 Werner 428
    if (!mStamp)
155 werner 429
        return;
430
    const Stamp *reader = mStamp->reader();
431
    if (!reader)
432
        return;
156 werner 433
    QPoint pos_reader = mPositionIndex;
155 werner 434
 
435
    int offset_reader = reader->offset();
436
    int offset_writer = mStamp->offset();
437
    int d_offset = offset_writer - offset_reader; // offset on the *stamp* to the crown-cells
438
 
439
    pos_reader-=QPoint(offset_reader, offset_reader);
40 Werner 440
 
155 werner 441
    float local_dom;
442
 
40 Werner 443
    int x,y;
444
    double sum=0.;
155 werner 445
    double value, own_value;
446
    float *grid_value;
403 werner 447
    float z, z_zstar;
155 werner 448
    int reader_size = reader->size();
449
    int rx = pos_reader.x();
450
    int ry = pos_reader.y();
451
    for (y=0;y<reader_size; ++y, ++ry) {
452
        grid_value = mGrid->ptr(rx, ry);
453
        for (x=0;x<reader_size;++x) {
454
 
387 werner 455
            local_dom = mHeightGrid->valueAtIndex((rx+x)/cPxPerHeight, ry/cPxPerHeight).height; // ry: gets ++ed in outer loop, rx not
403 werner 456
            z = std::max(mHeight - reader->distanceToCenter(x,y), 0.f); // distance to center = height (45° line)
457
            z_zstar = (z>=local_dom)?1.f:z/local_dom;
155 werner 458
 
403 werner 459
            own_value = 1. - mStamp->offsetValue(x,y,d_offset)*mOpacity * z_zstar;
460
            // old: own_value = 1. - mStamp->offsetValue(x,y,d_offset)*mOpacity / local_dom; // old: dom_height;
155 werner 461
            own_value = qMax(own_value, 0.02);
462
            value =  *grid_value++ / own_value; // remove impact of focal tree
403 werner 463
 
464
            //qDebug() << x << y << local_dom << z << z_zstar << own_value << value << *(grid_value-1) << (*reader)(x,y) << mStamp->offsetValue(x,y,d_offset);
155 werner 465
            //if (value>0.)
466
            sum += value * (*reader)(x,y);
467
 
40 Werner 468
        }
469
    }
155 werner 470
    mLRI = sum;
426 werner 471
    // LRI correction...
472
    double hrel = mHeight / mHeightGrid->valueAtIndex(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight).height;
473
    if (hrel<1.)
474
        mLRI = species()->speciesSet()->LRIcorrection(mLRI, hrel);
475
 
48 Werner 476
    // read dominance field...
155 werner 477
    // this applies only if some trees are potentially *higher* than the dominant height grid
478
    //if (dom_height < m_Height) {
48 Werner 479
        // if tree is higher than Z*, the dominance height
480
        // a part of the crown is in "full light".
155 werner 481
    //    m_statAboveZ++;
482
    //    mImpact = 1. - (1. - mImpact)*dom_height/m_Height;
483
    //}
403 werner 484
 
155 werner 485
    if (mLRI > 1.)
486
        mLRI = 1.;
206 werner 487
 
488
    // Finally, add LRI of this Tree to the ResourceUnit!
251 werner 489
    mRU->addWLA(mLeafArea, mLRI);
206 werner 490
 
212 werner 491
 
155 werner 492
    //qDebug() << "Tree #"<< id() << "value" << sum << "Impact" << mImpact;
206 werner 493
    //mRU->addWLA(mLRI*mLeafArea, mLeafArea);
40 Werner 494
}
495
 
155 werner 496
/// Torus version of read stamp (glued edges)
158 werner 497
void Tree::readLIF_torus()
78 Werner 498
{
106 Werner 499
    if (!mStamp)
107 Werner 500
        return;
106 Werner 501
    const Stamp *reader = mStamp->reader();
78 Werner 502
    if (!reader)
107 Werner 503
        return;
295 werner 504
    int bufferOffset = mGrid->indexAt(QPointF(0.,0.)).x(); // offset of buffer
78 Werner 505
 
387 werner 506
    QPoint pos_reader = QPoint((mPositionIndex.x()-bufferOffset)%cPxPerRU + bufferOffset,
507
                               (mPositionIndex.y()-bufferOffset)%cPxPerRU + bufferOffset); // offset within the ha
295 werner 508
    QPoint ru_offset = QPoint(mPositionIndex.x() - pos_reader.x(), mPositionIndex.y() - pos_reader.y()); // offset of the corner of the resource index
509
 
78 Werner 510
    int offset_reader = reader->offset();
106 Werner 511
    int offset_writer = mStamp->offset();
78 Werner 512
    int d_offset = offset_writer - offset_reader; // offset on the *stamp* to the crown-cells
513
 
514
    pos_reader-=QPoint(offset_reader, offset_reader);
515
 
516
    float local_dom;
517
 
518
    int x,y;
519
    double sum=0.;
520
    double value, own_value;
521
    float *grid_value;
407 werner 522
    float z, z_zstar;
78 Werner 523
    int reader_size = reader->size();
524
    int rx = pos_reader.x();
525
    int ry = pos_reader.y();
155 werner 526
    int xt, yt; // wrapped coords
527
 
397 werner 528
    for (y=0;y<reader_size; ++y) {
529
        yt = torusIndex(ry+y,cPxPerRU, bufferOffset, ru_offset.y());
78 Werner 530
        for (x=0;x<reader_size;++x) {
387 werner 531
            xt = torusIndex(rx+x,cPxPerRU, bufferOffset, ru_offset.x());
155 werner 532
            grid_value = mGrid->ptr(xt,yt);
407 werner 533
 
387 werner 534
            local_dom = mHeightGrid->valueAtIndex(xt/cPxPerHeight, yt/cPxPerHeight).height; // ry: gets ++ed in outer loop, rx not
407 werner 535
            z = std::max(mHeight - reader->distanceToCenter(x,y), 0.f); // distance to center = height (45° line)
536
            z_zstar = (z>=local_dom)?1.f:z/local_dom;
125 Werner 537
 
407 werner 538
            own_value = 1. - mStamp->offsetValue(x,y,d_offset)*mOpacity * z_zstar;
539
            // old: own_value = 1. - mStamp->offsetValue(x,y,d_offset)*mOpacity / local_dom; // old: dom_height;
78 Werner 540
            own_value = qMax(own_value, 0.02);
407 werner 541
            value =  *grid_value++ / own_value; // remove impact of focal tree
542
 
397 werner 543
            // debug for one tree in HJA
544
            //if (id()==178020)
545
            //    qDebug() << x << y << xt << yt << *grid_value << local_dom << own_value << value << (*reader)(x,y);
321 werner 546
            //if (_isnan(value))
547
            //    qDebug() << "isnan" << id();
397 werner 548
            if (value * (*reader)(x,y)>1.)
549
                qDebug() << "LIFTorus: value>1.";
78 Werner 550
            sum += value * (*reader)(x,y);
551
 
552
            //} // isIndexValid
553
        }
554
    }
106 Werner 555
    mLRI = sum;
426 werner 556
 
557
    // LRI correction...
558
    double hrel = mHeight / mHeightGrid->valueAtIndex(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight).height;
559
    if (hrel<1.)
560
        mLRI = species()->speciesSet()->LRIcorrection(mLRI, hrel);
561
 
562
 
615 werner 563
    if (isnan(mLRI)) {
321 werner 564
        qDebug() << "LRI invalid (nan)!" << id();
565
        mLRI=0.;
566
        //qDebug() << reader->dump();
567
    }
148 iland 568
    if (mLRI > 1.)
569
        mLRI = 1.;
78 Werner 570
    //qDebug() << "Tree #"<< id() << "value" << sum << "Impact" << mImpact;
205 werner 571
 
572
    // Finally, add LRI of this Tree to the ResourceUnit!
251 werner 573
    mRU->addWLA(mLeafArea, mLRI);
58 Werner 574
}
575
 
155 werner 576
 
40 Werner 577
void Tree::resetStatistics()
578
{
579
    m_statPrint=0;
105 Werner 580
    m_statCreated=0;
48 Werner 581
    m_statAboveZ=0;
40 Werner 582
    m_nextId=1;
583
}
107 Werner 584
 
251 werner 585
void Tree::calcLightResponse()
586
{
587
    // calculate a light response from lri:
298 werner 588
    // http://iland.boku.ac.at/individual+tree+light+availability
470 werner 589
    double lri = limit(mLRI * mRU->LRImodifier(), 0., 1.); // Eq. (3)
590
    mLightResponse = mSpecies->lightResponse(lri); // Eq. (4)
251 werner 591
    mRU->addLR(mLeafArea, mLightResponse);
592
 
593
}
594
 
110 Werner 595
//////////////////////////////////////////////////
596
////  Growth Functions
597
//////////////////////////////////////////////////
107 Werner 598
 
227 werner 599
/** grow() is the main function of the yearly tree growth.
600
  The main steps are:
298 werner 601
  - Production of GPP/NPP   @sa http://iland.boku.ac.at/primary+production http://iland.boku.ac.at/individual+tree+light+availability
602
  - Partitioning of NPP to biomass compartments of the tree @sa http://iland.boku.ac.at/allocation
227 werner 603
  - Growth of the stem http://iland.boku.ac.at/stem+growth (???)
387 werner 604
  Further activties: * the age of the tree is increased
605
                     * the mortality sub routine is executed
606
                     * seeds are produced */
107 Werner 607
void Tree::grow()
608
{
159 werner 609
    TreeGrowthData d;
169 werner 610
    mAge++; // increase age
230 werner 611
    // step 1: get "interception area" of the tree individual [m2]
612
    // the sum of all area of all trees of a unit equal the total stocked area * interception_factor(Beer-Lambert)
613
    double effective_area = mRU->interceptedArea(mLeafArea, mLightResponse);
107 Werner 614
 
230 werner 615
    // step 2: calculate GPP of the tree based
616
    // (1) get the amount of GPP for a "unit area" of the tree species
617
    double raw_gpp_per_area = mRU->resourceUnitSpecies(species()).prod3PG().GPPperArea();
618
    // (2) GPP (without aging-effect) in kg Biomass / year
619
    double raw_gpp = raw_gpp_per_area * effective_area;
161 werner 620
 
227 werner 621
    // apply aging according to the state of the individuum
388 werner 622
    const double aging_factor = mSpecies->aging(mHeight, mAge);
376 werner 623
    mRU->addTreeAging(mLeafArea, aging_factor);
227 werner 624
    double gpp = raw_gpp * aging_factor; //
608 werner 625
    d.NPP = gpp * cAutotrophicRespiration; // respiration loss (0.47), cf. Waring et al 1998.
113 Werner 626
 
279 werner 627
    //DBGMODE(
137 Werner 628
        if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dTreeNPP) && isDebugging()) {
133 Werner 629
            DebugList &out = GlobalSettings::instance()->debugList(mId, GlobalSettings::dTreeNPP);
630
            dumpList(out); // add tree headers
299 werner 631
            out << mLRI * mRU->LRImodifier() << mLightResponse << effective_area << raw_gpp << gpp << d.NPP << aging_factor;
133 Werner 632
        }
279 werner 633
    //); // DBGMODE()
217 werner 634
    if (d.NPP>0.)
635
        partitioning(d); // split npp to compartments and grow (diameter, height)
133 Werner 636
 
387 werner 637
    // mortality
200 werner 638
    if (Model::settings().mortalityEnabled)
639
        mortality(d);
110 Werner 640
 
159 werner 641
    mStressIndex = d.stress_index;
180 werner 642
 
643
    if (!isDead())
257 werner 644
        mRU->resourceUnitSpecies(species()).statistics().add(this, &d);
277 werner 645
 
387 werner 646
    // regeneration
460 werner 647
    mSpecies->seedProduction(mAge, mHeight, mPositionIndex);
387 werner 648
 
107 Werner 649
}
650
 
227 werner 651
/** partitioning of this years assimilates (NPP) to biomass compartments.
298 werner 652
  Conceptionally, the algorithm is based on Duursma, 2007.
653
  @sa http://iland.boku.ac.at/allocation */
159 werner 654
inline void Tree::partitioning(TreeGrowthData &d)
115 Werner 655
{
159 werner 656
    double npp = d.NPP;
115 Werner 657
    // add content of reserve pool
116 Werner 658
    npp += mNPPReserve;
159 werner 659
    const double foliage_mass_allo = species()->biomassFoliage(mDbh);
276 werner 660
    const double reserve_size = foliage_mass_allo * (1. + mSpecies->finerootFoliageRatio());
297 werner 661
    double refill_reserve = qMin(reserve_size, (1. + mSpecies->finerootFoliageRatio())*mFoliageMass); // not always try to refill reserve 100%
119 Werner 662
 
136 Werner 663
    double apct_wood, apct_root, apct_foliage; // allocation percentages (sum=1) (eta)
468 werner 664
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
117 Werner 665
    // turnover rates
159 werner 666
    const double &to_fol = species()->turnoverLeaf();
667
    const double &to_root = species()->turnoverRoot();
136 Werner 668
    // the turnover rate of wood depends on the size of the reserve pool:
116 Werner 669
 
136 Werner 670
 
163 werner 671
    double to_wood = refill_reserve / (mWoodyMass + refill_reserve);
672
 
468 werner 673
    apct_root = rus.prod3PG().rootFraction();
261 werner 674
    d.NPP_above = d.NPP * (1. - apct_root); // aboveground: total NPP - fraction to roots
298 werner 675
    double b_wf = species()->allometricRatio_wf(); // ratio of allometric exponents (b_woody / b_foliage)
117 Werner 676
 
677
    // Duursma 2007, Eq. (20)
167 werner 678
    apct_wood = (foliage_mass_allo*to_wood/npp + b_wf*(1.-apct_root) - b_wf*foliage_mass_allo*to_fol/npp) / ( foliage_mass_allo/mWoodyMass + b_wf );
163 werner 679
    if (apct_wood<0)
680
        apct_wood = 0.;
117 Werner 681
    apct_foliage = 1. - apct_root - apct_wood;
682
 
163 werner 683
 
684
    //DBGMODE(
685
            if (apct_foliage<0 || apct_wood<0)
686
                qDebug() << "transfer to foliage or wood < 0";
687
             if (npp<0)
688
                 qDebug() << "NPP < 0";
689
         //   );
690
 
136 Werner 691
    // Change of biomass compartments
276 werner 692
    double sen_root = mFineRootMass * to_root;
693
    double sen_foliage = mFoliageMass * to_fol;
521 werner 694
    if (ru()->snag())
588 werner 695
        ru()->snag()->addTurnoverLitter(this->species(), sen_foliage, sen_root);
298 werner 696
 
136 Werner 697
    // Roots
298 werner 698
    // http://iland.boku.ac.at/allocation#belowground_NPP
276 werner 699
    mFineRootMass -= sen_root; // reduce only fine root pool
700
    double delta_root = apct_root * npp;
701
    // 1st, refill the fine root pool
702
    double fineroot_miss = mFoliageMass * mSpecies->finerootFoliageRatio() - mFineRootMass;
703
    if (fineroot_miss>0.){
704
        double delta_fineroot = qMin(fineroot_miss, delta_root);
705
        mFineRootMass += delta_fineroot;
706
        delta_root -= delta_fineroot;
707
    }
708
    // 2nd, the rest of NPP allocated to roots go to coarse roots
595 werner 709
    double max_coarse_root = species()->biomassRoot(mDbh);
276 werner 710
    mCoarseRootMass += delta_root;
595 werner 711
    if (mCoarseRootMass > max_coarse_root) {
712
        // if the coarse root pool exceeds the value given by the allometry, then the
713
        // surplus is accounted as turnover
714
        if (ru()->snag())
715
            ru()->snag()->addTurnoverWood(species(), mCoarseRootMass-max_coarse_root);
119 Werner 716
 
595 werner 717
        mCoarseRootMass = max_coarse_root;
718
    }
719
 
136 Werner 720
    // Foliage
159 werner 721
    double delta_foliage = apct_foliage * npp - sen_foliage;
137 Werner 722
    mFoliageMass += delta_foliage;
615 werner 723
    if (isnan(mFoliageMass))
217 werner 724
        qDebug() << "foliage mass invalid!";
163 werner 725
    if (mFoliageMass<0.) mFoliageMass=0.; // limit to zero
726
 
159 werner 727
    mLeafArea = mFoliageMass * species()->specificLeafArea(); // update leaf area
119 Werner 728
 
271 werner 729
    // stress index: different varaints at denominator: to_fol*foliage_mass = leafmass to rebuild,
198 werner 730
    // foliage_mass_allo: simply higher chance for stress
271 werner 731
    // note: npp = NPP + reserve (see above)
276 werner 732
    d.stress_index =qMax(1. - (npp) / ( to_fol*foliage_mass_allo + to_root*foliage_mass_allo*species()->finerootFoliageRatio() + reserve_size), 0.);
198 werner 733
 
136 Werner 734
    // Woody compartments
298 werner 735
    // see also: http://iland.boku.ac.at/allocation#reserve_and_allocation_to_stem_growth
136 Werner 736
    // (1) transfer to reserve pool
737
    double gross_woody = apct_wood * npp;
738
    double to_reserve = qMin(reserve_size, gross_woody);
739
    mNPPReserve = to_reserve;
740
    double net_woody = gross_woody - to_reserve;
137 Werner 741
    double net_stem = 0.;
164 werner 742
    mDbhDelta = 0.;
165 werner 743
 
744
 
136 Werner 745
    if (net_woody > 0.) {
746
        // (2) calculate part of increment that is dedicated to the stem (which is a function of diameter)
159 werner 747
        net_stem = net_woody * species()->allometricFractionStem(mDbh);
748
        d.NPP_stem = net_stem;
137 Werner 749
        mWoodyMass += net_woody;
136 Werner 750
        //  (3) growth of diameter and height baseed on net stem increment
159 werner 751
        grow_diameter(d);
136 Werner 752
    }
119 Werner 753
 
279 werner 754
    //DBGMODE(
137 Werner 755
     if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dTreePartition)
756
         && isDebugging() ) {
129 Werner 757
            DebugList &out = GlobalSettings::instance()->debugList(mId, GlobalSettings::dTreePartition);
758
            dumpList(out); // add tree headers
136 Werner 759
            out << npp << apct_foliage << apct_wood << apct_root
276 werner 760
                    << delta_foliage << net_woody << delta_root << mNPPReserve << net_stem << d.stress_index;
137 Werner 761
     }
144 Werner 762
 
279 werner 763
    //); // DBGMODE()
497 werner 764
    DBGMODE(
428 werner 765
      if (mWoodyMass<0. || mWoodyMass>50000 || mFoliageMass<0. || mFoliageMass>2000. || mCoarseRootMass<0. || mCoarseRootMass>30000
393 werner 766
         || mNPPReserve>4000.) {
389 werner 767
         qDebug() << "Tree:partitioning: invalid or unlikely pools.";
144 Werner 768
         qDebug() << GlobalSettings::instance()->debugListCaptions(GlobalSettings::DebugOutputs(0));
769
         DebugList dbg; dumpList(dbg);
770
         qDebug() << dbg;
497 werner 771
     } );
144 Werner 772
 
136 Werner 773
    /*DBG_IF_X(mId == 1 , "Tree::partitioning", "dump", dump()
774
             + QString("npp %1 npp_reserve %9 sen_fol %2 sen_stem %3 sen_root %4 net_fol %5 net_stem %6 net_root %7 to_reserve %8")
775
               .arg(npp).arg(senescence_foliage).arg(senescence_stem).arg(senescence_root)
776
               .arg(net_foliage).arg(net_stem).arg(net_root).arg(to_reserve).arg(mNPPReserve) );*/
129 Werner 777
 
115 Werner 778
}
779
 
125 Werner 780
 
134 Werner 781
/** Determination of diamter and height growth based on increment of the stem mass (@p net_stem_npp).
125 Werner 782
    Refer to XXX for equations and variables.
783
    This function updates the dbh and height of the tree.
227 werner 784
    The equations are based on dbh in meters! */
159 werner 785
inline void Tree::grow_diameter(TreeGrowthData &d)
119 Werner 786
{
787
    // determine dh-ratio of increment
788
    // height increment is a function of light competition:
125 Werner 789
    double hd_growth = relative_height_growth(); // hd of height growth
153 werner 790
    double d_m = mDbh / 100.; // current diameter in [m]
159 werner 791
    double net_stem_npp = d.NPP_stem;
792
 
153 werner 793
    const double d_delta_m = mDbhDelta / 100.; // increment of last year in [m]
115 Werner 794
 
159 werner 795
    const double mass_factor = species()->volumeFactor() * species()->density();
153 werner 796
    double stem_mass = mass_factor * d_m*d_m * mHeight; // result: kg, dbh[cm], h[meter]
123 Werner 797
 
153 werner 798
    // factor is in diameter increment per NPP [m/kg]
799
    double factor_diameter = 1. / (  mass_factor * (d_m + d_delta_m)*(d_m + d_delta_m) * ( 2. * mHeight/d_m + hd_growth) );
125 Werner 800
    double delta_d_estimate = factor_diameter * net_stem_npp; // estimated dbh-inc using last years increment
801
 
802
    // using that dbh-increment we estimate a stem-mass-increment and the residual (Eq. 9)
153 werner 803
    double stem_estimate = mass_factor * (d_m + delta_d_estimate)*(d_m + delta_d_estimate)*(mHeight + delta_d_estimate*hd_growth);
137 Werner 804
    double stem_residual = stem_estimate - (stem_mass + net_stem_npp);
125 Werner 805
 
806
    // the final increment is then:
807
    double d_increment = factor_diameter * (net_stem_npp - stem_residual); // Eq. (11)
463 werner 808
    double res_final  = 0.;
809
    if (fabs(stem_residual) > 1.) {
465 werner 810
 
463 werner 811
        // calculate final residual in stem
812
        res_final = mass_factor * (d_m + d_increment)*(d_m + d_increment)*(mHeight + d_increment*hd_growth)-((stem_mass + net_stem_npp));
813
        if (fabs(res_final)>1.) {
465 werner 814
            // for large errors in stem biomass due to errors in diameter increment (> 1kg), we solve the increment iteratively.
463 werner 815
            // first, increase increment with constant step until we overestimate the first time
816
            // then,
817
            d_increment = 0.02; // start with 2cm increment
818
            bool reached_error = false;
819
            double step=0.01; // step-width 1cm
820
            double est_stem;
821
            do {
822
                est_stem = mass_factor * (d_m + d_increment)*(d_m + d_increment)*(mHeight + d_increment*hd_growth); // estimate with current increment
823
                stem_residual = est_stem - (stem_mass + net_stem_npp);
824
 
825
                if (fabs(stem_residual) <1.) // finished, if stem residual below 1kg
826
                    break;
827
                if (stem_residual > 0.) {
828
                    d_increment -= step;
829
                    reached_error=true;
830
                } else {
831
                    d_increment += step;
832
                }
833
                if (reached_error)
834
                    step /= 2.;
835
            } while (step>0.00001); // continue until diameter "accuracy" falls below 1/100mm
836
        }
837
    }
838
 
839
    if (d_increment<0.f)
840
        qDebug() << "Tree::grow_diameter: d_inc < 0.";
144 Werner 841
    DBG_IF_X(d_increment<0. || d_increment>0.1, "Tree::grow_dimater", "increment out of range.", dump()
125 Werner 842
             + QString("\nhdz %1 factor_diameter %2 stem_residual %3 delta_d_estimate %4 d_increment %5 final residual(kg) %6")
843
               .arg(hd_growth).arg(factor_diameter).arg(stem_residual).arg(delta_d_estimate).arg(d_increment)
142 Werner 844
               .arg( mass_factor * (mDbh + d_increment)*(mDbh + d_increment)*(mHeight + d_increment*hd_growth)-((stem_mass + net_stem_npp)) ));
125 Werner 845
 
303 werner 846
    //DBGMODE(
463 werner 847
        // do not calculate res_final twice if already done
848
        DBG_IF_X( (res_final==0.?fabs(mass_factor * (d_m + d_increment)*(d_m + d_increment)*(mHeight + d_increment*hd_growth)-((stem_mass + net_stem_npp))):res_final) > 1, "Tree::grow_diameter", "final residual stem estimate > 1kg", dump());
153 werner 849
        DBG_IF_X(d_increment > 10. || d_increment*hd_growth >10., "Tree::grow_diameter", "growth out of bound:",QString("d-increment %1 h-increment %2 ").arg(d_increment).arg(d_increment*hd_growth/100.) + dump());
158 werner 850
 
137 Werner 851
        if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dTreeGrowth) && isDebugging() ) {
126 Werner 852
            DebugList &out = GlobalSettings::instance()->debugList(mId, GlobalSettings::dTreeGrowth);
129 Werner 853
            dumpList(out); // add tree headers
143 Werner 854
            out << net_stem_npp << stem_mass << hd_growth << factor_diameter << delta_d_estimate*100 << d_increment*100;
126 Werner 855
        }
153 werner 856
 
303 werner 857
    //); // DBGMODE()
125 Werner 858
 
859
    d_increment = qMax(d_increment, 0.);
860
 
861
    // update state variables
153 werner 862
    mDbh += d_increment*100; // convert from [m] to [cm]
863
    mDbhDelta = d_increment*100; // save for next year's growth
864
    mHeight += d_increment * hd_growth;
158 werner 865
 
866
    // update state of LIP stamp and opacity
159 werner 867
    mStamp = species()->stamp(mDbh, mHeight); // get new stamp for updated dimensions
158 werner 868
    // calculate the CrownFactor which reflects the opacity of the crown
200 werner 869
    const double k=Model::settings().lightExtinctionCoefficientOpacity;
870
    mOpacity = 1. - exp(-k * mLeafArea / mStamp->crownArea());
158 werner 871
 
119 Werner 872
}
873
 
125 Werner 874
 
875
/// return the HD ratio of this year's increment based on the light status.
119 Werner 876
inline double Tree::relative_height_growth()
877
{
878
    double hd_low, hd_high;
879
    mSpecies->hdRange(mDbh, hd_low, hd_high);
880
 
125 Werner 881
    DBG_IF_X(hd_low>hd_high, "Tree::relative_height_growth", "hd low higher dann hd_high for ", dump());
882
    DBG_IF_X(hd_low < 20 || hd_high>250, "Tree::relative_height_growth", "hd out of range ", dump() + QString(" hd-low: %1 hd-high: %2").arg(hd_low).arg(hd_high));
883
 
884
    // scale according to LRI: if receiving much light (LRI=1), the result is hd_low (for open grown trees)
326 werner 885
    // use the corrected LRI (see tracker#11)
886
    double lri = limit(mLRI * mRU->LRImodifier(),0.,1.);
887
    double hd_ratio = hd_high - (hd_high-hd_low)*lri;
125 Werner 888
    return hd_ratio;
119 Werner 889
}
141 Werner 890
 
278 werner 891
/** This function is called if a tree dies.
892
  @sa ResourceUnit::cleanTreeList(), remove() */
277 werner 893
void Tree::die(TreeGrowthData *d)
894
{
895
    setFlag(Tree::TreeDead, true); // set flag that tree is dead
664 werner 896
    mRU->treeDied();
468 werner 897
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
898
    rus.statisticsDead().add(this, d); // add tree to statistics
521 werner 899
    if (ru()->snag())
900
        ru()->snag()->addMortality(this);
277 werner 901
}
902
 
564 werner 903
void Tree::remove(double removeFoliage, double removeBranch, double removeStem )
278 werner 904
{
905
    setFlag(Tree::TreeDead, true); // set flag that tree is dead
664 werner 906
    mRU->treeDied();
468 werner 907
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
908
    rus.statisticsMgmt().add(this, 0);
521 werner 909
    if (ru()->snag())
564 werner 910
        ru()->snag()->addHarvest(this, removeStem, removeBranch, removeFoliage);
278 werner 911
}
912
 
713 werner 913
/// remove the tree due to an special event (disturbance)
914
void Tree::removeDisturbance(const double stem_to_soil_fraction, const double stem_to_snag_fraction, const double branch_to_soil_fraction, const double branch_to_snag_fraction, const double foliage_to_soil_fraction)
915
{
916
    setFlag(Tree::TreeDead, true); // set flag that tree is dead
917
    mRU->treeDied();
918
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
919
    rus.statisticsMgmt().add(this, 0);
920
    if (ru()->snag())
921
        ru()->snag()->addDisturbance(this, stem_to_snag_fraction, stem_to_soil_fraction, branch_to_snag_fraction, branch_to_soil_fraction, foliage_to_soil_fraction);
922
}
923
 
668 werner 924
void Tree::removeBiomass(const double removeFoliageFraction, const double removeBranchFraction, const double removeStemFraction)
925
{
926
    mFoliageMass *= 1. - removeFoliageFraction;
927
    mWoodyMass *= (1. - removeStemFraction);
928
    // we have a problem with the branches: this currently cannot be done properly!
929
}
930
 
159 werner 931
void Tree::mortality(TreeGrowthData &d)
932
{
163 werner 933
    // death if leaf area is 0
934
    if (mFoliageMass<0.00001)
935
        die();
936
 
308 werner 937
    double p_death,  p_stress, p_intrinsic;
938
    p_intrinsic = species()->deathProb_intrinsic();
939
    p_stress = species()->deathProb_stress(d.stress_index);
940
    p_death =  p_intrinsic + p_stress;
707 werner 941
    double p = drandom(); //0..1
159 werner 942
    if (p<p_death) {
943
        // die...
944
        die();
945
    }
946
}
141 Werner 947
 
948
//////////////////////////////////////////////////
949
////  value functions
950
//////////////////////////////////////////////////
951
 
145 Werner 952
double Tree::volume() const
141 Werner 953
{
954
    /// @see Species::volumeFactor() for details
159 werner 955
    const double volume_factor = species()->volumeFactor();
157 werner 956
    const double volume =  volume_factor * mDbh*mDbh*mHeight * 0.0001; // dbh in cm: cm/100 * cm/100 = cm*cm * 0.0001 = m2
141 Werner 957
    return volume;
958
}
180 werner 959
 
579 werner 960
/// return the basal area in m2
180 werner 961
double Tree::basalArea() const
962
{
963
    // A = r^2 * pi = d/2*pi; from cm->m: d/200
964
    const double b = (mDbh/200.)*(mDbh/200.)*M_PI;
965
    return b;
966
}
668 werner 967