Subversion Repositories public iLand

Rev

Rev 1104 | Rev 1118 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1
 
671 werner 2
/********************************************************************************************
3
**    iLand - an individual based forest landscape and disturbance model
4
**    http://iland.boku.ac.at
5
**    Copyright (C) 2009-  Werner Rammer, Rupert Seidl
6
**
7
**    This program is free software: you can redistribute it and/or modify
8
**    it under the terms of the GNU General Public License as published by
9
**    the Free Software Foundation, either version 3 of the License, or
10
**    (at your option) any later version.
11
**
12
**    This program is distributed in the hope that it will be useful,
13
**    but WITHOUT ANY WARRANTY; without even the implied warranty of
14
**    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
**    GNU General Public License for more details.
16
**
17
**    You should have received a copy of the GNU General Public License
18
**    along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
********************************************************************************************/
117 Werner 20
#include "global.h"
21
#include "tree.h"
3 Werner 22
 
83 Werner 23
#include "grid.h"
3 Werner 24
 
83 Werner 25
#include "stamp.h"
90 Werner 26
#include "species.h"
189 iland 27
#include "resourceunit.h"
151 iland 28
#include "model.h"
468 werner 29
#include "snag.h"
38 Werner 30
 
904 werner 31
#include "forestmanagementengine.h"
1044 werner 32
#include "modules.h"
904 werner 33
 
1102 werner 34
#include "treeout.h"
1114 werner 35
#include "landscapeout.h"
1071 werner 36
 
110 Werner 37
// static varaibles
106 Werner 38
FloatGrid *Tree::mGrid = 0;
151 iland 39
HeightGrid *Tree::mHeightGrid = 0;
1102 werner 40
TreeRemovedOut *Tree::mRemovalOutput = 0;
1114 werner 41
LandscapeRemovedOut *Tree::mLSRemovalOutput = 0;
40 Werner 42
int Tree::m_statPrint=0;
48 Werner 43
int Tree::m_statAboveZ=0;
105 Werner 44
int Tree::m_statCreated=0;
40 Werner 45
int Tree::m_nextId=0;
46
 
1071 werner 47
#ifdef ALT_TREE_MORTALITY
1102 werner 48
static double _stress_threshold = 0.05;
49
static int _stress_years = 5;
50
static double _stress_death_prob = 0.33;
1071 werner 51
#endif
52
 
697 werner 53
/** @class Tree
54
    @ingroup core
55
    A tree is the basic simulation entity of iLand and represents a single tree.
56
    Trees in iLand are designed to be lightweight, thus the list of stored properties is limited. Basic properties
57
    are dimensions (dbh, height), biomass pools (stem, leaves, roots), the reserve NPP pool. Additionally, the location and species are stored.
58
    A Tree has a height of at least 4m; trees below this threshold are covered by the regeneration layer (see Sapling).
59
    Trees are stored in lists managed at the resource unit level.
158 werner 60
 
697 werner 61
  */
257 werner 62
 
158 werner 63
/** get distance and direction between two points.
64
  returns the distance (m), and the angle between PStart and PEnd (radians) in referenced param rAngle. */
1102 werner 65
double dist_and_direction(const QPointF &PStart, const QPointF &PEnd, double &rAngle)
151 iland 66
{
1102 werner 67
    double dx = PEnd.x() - PStart.x();
68
    double dy = PEnd.y() - PStart.y();
69
    double d = sqrt(dx*dx + dy*dy);
158 werner 70
    // direction:
71
    rAngle = atan2(dx, dy);
72
    return d;
151 iland 73
}
74
 
158 werner 75
 
110 Werner 76
// lifecycle
3 Werner 77
Tree::Tree()
78
{
149 werner 79
    mDbh = mHeight = 0;
80
    mRU = 0; mSpecies = 0;
169 werner 81
    mFlags = mAge = 0;
276 werner 82
    mOpacity=mFoliageMass=mWoodyMass=mCoarseRootMass=mFineRootMass=mLeafArea=0.;
159 werner 83
    mDbhDelta=mNPPReserve=mLRI=mStressIndex=0.;
264 werner 84
    mLightResponse = 0.;
975 werner 85
    mStamp=0;
106 Werner 86
    mId = m_nextId++;
105 Werner 87
    m_statCreated++;
3 Werner 88
}
38 Werner 89
 
407 werner 90
float Tree::crownRadius() const
91
{
92
    Q_ASSERT(mStamp!=0);
93
    return mStamp->crownRadius();
94
}
95
 
476 werner 96
float Tree::biomassBranch() const
97
{
1102 werner 98
    return static_cast<float>( mSpecies->biomassBranch(mDbh) );
476 werner 99
}
100
 
158 werner 101
void Tree::setGrid(FloatGrid* gridToStamp, Grid<HeightGridValue> *dominanceGrid)
3 Werner 102
{
158 werner 103
    mGrid = gridToStamp; mHeightGrid = dominanceGrid;
3 Werner 104
}
105
 
667 werner 106
// calculate the thickness of the bark of the tree
107
double Tree::barkThickness() const
108
{
109
    return mSpecies->barkThickness(mDbh);
110
}
111
 
125 Werner 112
/// dumps some core variables of a tree to a string.
113
QString Tree::dump()
114
{
115
    QString result = QString("id %1 species %2 dbh %3 h %4 x/y %5/%6 ru# %7 LRI %8")
159 werner 116
                            .arg(mId).arg(species()->id()).arg(mDbh).arg(mHeight)
156 werner 117
                            .arg(position().x()).arg(position().y())
125 Werner 118
                            .arg(mRU->index()).arg(mLRI);
119
    return result;
120
}
3 Werner 121
 
129 Werner 122
void Tree::dumpList(DebugList &rTargetList)
123
{
159 werner 124
    rTargetList << mId << species()->id() << mDbh << mHeight  << position().x() << position().y()   << mRU->index() << mLRI
276 werner 125
                << mWoodyMass << mCoarseRootMass << mFoliageMass << mLeafArea;
129 Werner 126
}
127
 
38 Werner 128
void Tree::setup()
129
{
975 werner 130
    if (mDbh<=0 || mHeight<=0) {
131
        throw IException(QString("Error: trying to set up a tree with invalid dimensions: dbh: %1 height: %2 id: %3 RU-index: %4").arg(mDbh).arg(mHeight).arg(mId).arg(mRU->index()));
132
    }
38 Werner 133
    // check stamp
159 werner 134
    Q_ASSERT_X(species()!=0, "Tree::setup()", "species is NULL");
135
    mStamp = species()->stamp(mDbh, mHeight);
505 werner 136
    if (!mStamp) {
137
        throw IException("Tree::setup() with invalid stamp!");
138
    }
110 Werner 139
 
1102 werner 140
    mFoliageMass = static_cast<float>( species()->biomassFoliage(mDbh) );
141
    mCoarseRootMass = static_cast<float>( species()->biomassRoot(mDbh) ); // coarse root (allometry)
142
    mFineRootMass = static_cast<float>( mFoliageMass * species()->finerootFoliageRatio() ); //  fine root (size defined  by finerootFoliageRatio)
143
    mWoodyMass = static_cast<float>( species()->biomassWoody(mDbh) );
110 Werner 144
 
137 Werner 145
    // LeafArea[m2] = LeafMass[kg] * specificLeafArea[m2/kg]
1102 werner 146
    mLeafArea = static_cast<float>( mFoliageMass * species()->specificLeafArea() );
147
    mOpacity = static_cast<float>( 1. - exp(- Model::settings().lightExtinctionCoefficientOpacity * mLeafArea / mStamp->crownArea()) );
148
    mNPPReserve = static_cast<float>( (1+species()->finerootFoliageRatio())*mFoliageMass ); // initial value
780 werner 149
    mDbhDelta = 0.1f; // initial value: used in growth() to estimate diameter increment
376 werner 150
 
38 Werner 151
}
39 Werner 152
 
388 werner 153
void Tree::setAge(const int age, const float treeheight)
154
{
155
    mAge = age;
156
    if (age==0) {
157
        // estimate age using the tree height
158
        mAge = mSpecies->estimateAge(treeheight);
159
    }
160
}
161
 
110 Werner 162
//////////////////////////////////////////////////
163
////  Light functions (Pattern-stuff)
164
//////////////////////////////////////////////////
165
 
70 Werner 166
#define NOFULLDBG
77 Werner 167
//#define NOFULLOPT
39 Werner 168
 
40 Werner 169
 
158 werner 170
void Tree::applyLIP()
77 Werner 171
{
144 Werner 172
    if (!mStamp)
173
        return;
106 Werner 174
    Q_ASSERT(mGrid!=0 && mStamp!=0 && mRU!=0);
156 werner 175
    QPoint pos = mPositionIndex;
106 Werner 176
    int offset = mStamp->offset();
77 Werner 177
    pos-=QPoint(offset, offset);
178
 
179
    float local_dom; // height of Z* on the current position
180
    int x,y;
401 werner 181
    float value, z, z_zstar;
106 Werner 182
    int gr_stamp = mStamp->size();
705 werner 183
 
106 Werner 184
    if (!mGrid->isIndexValid(pos) || !mGrid->isIndexValid(pos+QPoint(gr_stamp, gr_stamp))) {
407 werner 185
        // this should not happen because of the buffer
77 Werner 186
        return;
187
    }
705 werner 188
    int grid_y = pos.y();
77 Werner 189
    for (y=0;y<gr_stamp; ++y) {
403 werner 190
 
705 werner 191
        float *grid_value_ptr = mGrid->ptr(pos.x(), grid_y);
192
        int grid_x = pos.x();
193
        for (x=0;x<gr_stamp;++x, ++grid_x, ++grid_value_ptr) {
77 Werner 194
            // suppose there is no stamping outside
106 Werner 195
            value = (*mStamp)(x,y); // stampvalue
705 werner 196
            //if (value>0.f) {
197
                local_dom = (*mHeightGrid)(grid_x/cPxPerHeight, grid_y/cPxPerHeight).height;
884 werner 198
                z = std::max(mHeight - (*mStamp).distanceToCenter(x,y), 0.f); // distance to center = height (45 degree line)
705 werner 199
                z_zstar = (z>=local_dom)?1.f:z/local_dom;
1102 werner 200
                value = 1.f - value*mOpacity * z_zstar; // calculated value
705 werner 201
                value = std::max(value, 0.02f); // limit value
77 Werner 202
 
705 werner 203
                *grid_value_ptr *= value;
204
            //}
403 werner 205
 
77 Werner 206
        }
403 werner 207
        grid_y++;
77 Werner 208
    }
209
 
210
    m_statPrint++; // count # of stamp applications...
211
}
212
 
155 werner 213
/// helper function for gluing the edges together
214
/// index: index at grid
215
/// count: number of pixels that are the simulation area (e.g. 100m and 2m pixel -> 50)
216
/// buffer: size of buffer around simulation area (in pixels)
295 werner 217
inline int torusIndex(int index, int count, int buffer, int ru_index)
155 werner 218
{
295 werner 219
    return buffer + ru_index + (index-buffer+count)%count;
155 werner 220
}
62 Werner 221
 
155 werner 222
 
223
/** Apply LIPs. This "Torus" functions wraps the influence at the edges of a 1ha simulation area.
224
  */
158 werner 225
void Tree::applyLIP_torus()
155 werner 226
{
227
    if (!mStamp)
228
        return;
229
    Q_ASSERT(mGrid!=0 && mStamp!=0 && mRU!=0);
295 werner 230
    int bufferOffset = mGrid->indexAt(QPointF(0.,0.)).x(); // offset of buffer
387 werner 231
    QPoint pos = QPoint((mPositionIndex.x()-bufferOffset)%cPxPerRU  + bufferOffset,
232
                        (mPositionIndex.y()-bufferOffset)%cPxPerRU + bufferOffset); // offset within the ha
295 werner 233
    QPoint ru_offset = QPoint(mPositionIndex.x() - pos.x(), mPositionIndex.y() - pos.y()); // offset of the corner of the resource index
155 werner 234
 
235
    int offset = mStamp->offset();
236
    pos-=QPoint(offset, offset);
237
 
238
    float local_dom; // height of Z* on the current position
239
    int x,y;
240
    float value;
241
    int gr_stamp = mStamp->size();
242
    int grid_x, grid_y;
243
    float *grid_value;
244
    if (!mGrid->isIndexValid(pos) || !mGrid->isIndexValid(pos+QPoint(gr_stamp, gr_stamp))) {
245
        // todo: in this case we should use another algorithm!!! necessary????
246
        return;
247
    }
407 werner 248
    float z, z_zstar;
155 werner 249
    int xt, yt; // wraparound coordinates
250
    for (y=0;y<gr_stamp; ++y) {
251
        grid_y = pos.y() + y;
387 werner 252
        yt = torusIndex(grid_y, cPxPerRU,bufferOffset, ru_offset.y()); // 50 cells per 100m
155 werner 253
        for (x=0;x<gr_stamp;++x) {
254
            // suppose there is no stamping outside
255
            grid_x = pos.x() + x;
387 werner 256
            xt = torusIndex(grid_x,cPxPerRU,bufferOffset, ru_offset.x());
155 werner 257
 
387 werner 258
            local_dom = mHeightGrid->valueAtIndex(xt/cPxPerHeight,yt/cPxPerHeight).height;
407 werner 259
 
884 werner 260
            z = std::max(mHeight - (*mStamp).distanceToCenter(x,y), 0.f); // distance to center = height (45 degree line)
407 werner 261
            z_zstar = (z>=local_dom)?1.f:z/local_dom;
155 werner 262
            value = (*mStamp)(x,y); // stampvalue
1102 werner 263
            value = 1.f - value*mOpacity * z_zstar; // calculated value
407 werner 264
            // old: value = 1. - value*mOpacity / local_dom; // calculated value
155 werner 265
            value = qMax(value, 0.02f); // limit value
266
 
267
            grid_value = mGrid->ptr(xt, yt); // use wraparound coordinates
268
            *grid_value *= value;
269
        }
270
    }
271
 
272
    m_statPrint++; // count # of stamp applications...
273
}
274
 
74 Werner 275
/** heightGrid()
276
  This function calculates the "dominant height field". This grid is coarser as the fine-scaled light-grid.
277
*/
278
void Tree::heightGrid()
279
{
280
 
387 werner 281
    QPoint p = QPoint(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight); // pos of tree on height grid
74 Werner 282
 
151 iland 283
    // count trees that are on height-grid cells (used for stockable area)
285 werner 284
    mHeightGrid->valueAtIndex(p).increaseCount();
401 werner 285
    if (mHeight > mHeightGrid->valueAtIndex(p).height)
286
        mHeightGrid->valueAtIndex(p).height=mHeight;
406 werner 287
 
288
    int r = mStamp->reader()->offset(); // distance between edge and the center pixel. e.g.: if r = 2 -> stamp=5x5
289
    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
290
    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
291
    if (index_eastwest - r < 0) { // east
410 werner 292
        mHeightGrid->valueAtIndex(p.x()-1, p.y()).height=qMax(mHeightGrid->valueAtIndex(p.x()-1, p.y()).height,mHeight);
406 werner 293
    }
294
    if (index_eastwest + r >= cPxPerHeight) {  // west
410 werner 295
        mHeightGrid->valueAtIndex(p.x()+1, p.y()).height=qMax(mHeightGrid->valueAtIndex(p.x()+1, p.y()).height,mHeight);
406 werner 296
    }
297
    if (index_northsouth - r < 0) {  // south
410 werner 298
        mHeightGrid->valueAtIndex(p.x(), p.y()-1).height=qMax(mHeightGrid->valueAtIndex(p.x(), p.y()-1).height,mHeight);
406 werner 299
    }
300
    if (index_northsouth + r >= cPxPerHeight) {  // north
410 werner 301
        mHeightGrid->valueAtIndex(p.x(), p.y()+1).height=qMax(mHeightGrid->valueAtIndex(p.x(), p.y()+1).height,mHeight);
406 werner 302
    }
303
 
304
 
401 werner 305
    // without spread of the height grid
151 iland 306
 
401 werner 307
//    // height of Z*
308
//    const float cellsize = mHeightGrid->cellsize();
309
//
310
//    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
311
//    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
312
//    int dist[9];
313
//    dist[3] = index_northsouth * 2 + 1; // south
314
//    dist[1] = index_eastwest * 2 + 1; // west
315
//    dist[5] = 10 - dist[3]; // north
316
//    dist[7] = 10 - dist[1]; // east
317
//    dist[8] = qMax(dist[5], dist[7]); // north-east
318
//    dist[6] = qMax(dist[3], dist[7]); // south-east
319
//    dist[0] = qMax(dist[3], dist[1]); // south-west
320
//    dist[2] = qMax(dist[5], dist[1]); // north-west
321
//    dist[4] = 0; // center cell
322
//    /* the scheme of indices is as follows:  if sign(ix)= -1, if ix<0, 0 for ix=0, 1 for ix>0 (detto iy), then:
323
//       index = 4 + 3*sign(ix) + sign(iy) transforms combinations of directions to unique ids (0..8), which are used above.
324
//        e.g.: sign(ix) = -1, sign(iy) = 1 (=north-west) -> index = 4 + -3 + 1 = 2
325
//    */
326
//
327
//
328
//    int ringcount = int(floor(mHeight / cellsize)) + 1;
329
//    int ix, iy;
330
//    int ring;
331
//    float hdom;
332
//
333
//    for (ix=-ringcount;ix<=ringcount;ix++)
334
//        for (iy=-ringcount; iy<=+ringcount; iy++) {
335
//        ring = qMax(abs(ix), abs(iy));
336
//        QPoint pos(ix+p.x(), iy+p.y());
337
//        if (mHeightGrid->isIndexValid(pos)) {
338
//            float &rHGrid = mHeightGrid->valueAtIndex(pos).height;
339
//            if (rHGrid > mHeight) // skip calculation if grid is higher than tree
340
//                continue;
341
//            int direction = 4 + (ix?(ix<0?-3:3):0) + (iy?(iy<0?-1:1):0); // 4 + 3*sgn(x) + sgn(y)
342
//            hdom = mHeight - dist[direction];
343
//            if (ring>1)
344
//                hdom -= (ring-1)*10;
345
//
346
//            rHGrid = qMax(rHGrid, hdom); // write value
347
//        } // is valid
348
//    } // for (y)
39 Werner 349
}
40 Werner 350
 
407 werner 351
void Tree::heightGrid_torus()
352
{
353
    // height of Z*
155 werner 354
 
407 werner 355
    QPoint p = QPoint(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight); // pos of tree on height grid
356
    int bufferOffset = mHeightGrid->indexAt(QPointF(0.,0.)).x(); // offset of buffer (i.e.: size of buffer in height-pixels)
357
    p.setX((p.x()-bufferOffset)%10 + bufferOffset); // 10: 10 x 10m pixeln in 100m
358
    p.setY((p.y()-bufferOffset)%10 + bufferOffset);
155 werner 359
 
407 werner 360
 
361
    // torus coordinates: ru_offset = coords of lower left corner of 1ha patch
362
    QPoint ru_offset =QPoint(mPositionIndex.x()/cPxPerHeight - p.x(), mPositionIndex.y()/cPxPerHeight - p.y());
363
 
364
    // count trees that are on height-grid cells (used for stockable area)
365
    HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x(),10,bufferOffset,ru_offset.x()),
366
                                                   torusIndex(p.y(),10,bufferOffset,ru_offset.y()));
367
    v.increaseCount();
368
    v.height = qMax(v.height, mHeight);
369
 
370
 
371
    int r = mStamp->reader()->offset(); // distance between edge and the center pixel. e.g.: if r = 2 -> stamp=5x5
372
    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
373
    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
374
    if (index_eastwest - r < 0) { // east
375
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x()-1,10,bufferOffset,ru_offset.x()),
376
                                                       torusIndex(p.y(),10,bufferOffset,ru_offset.y()));
410 werner 377
        v.height = qMax(v.height, mHeight);
407 werner 378
    }
379
    if (index_eastwest + r >= cPxPerHeight) {  // west
380
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x()+1,10,bufferOffset,ru_offset.x()),
381
                                                       torusIndex(p.y(),10,bufferOffset,ru_offset.y()));
410 werner 382
        v.height = qMax(v.height, mHeight);
407 werner 383
    }
384
    if (index_northsouth - r < 0) {  // south
385
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x(),10,bufferOffset,ru_offset.x()),
386
                                                       torusIndex(p.y()-1,10,bufferOffset,ru_offset.y()));
410 werner 387
        v.height = qMax(v.height, mHeight);
407 werner 388
    }
389
    if (index_northsouth + r >= cPxPerHeight) {  // north
390
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x(),10,bufferOffset,ru_offset.x()),
391
                                                       torusIndex(p.y()+1,10,bufferOffset,ru_offset.y()));
410 werner 392
        v.height = qMax(v.height, mHeight);
407 werner 393
    }
394
 
395
 
396
 
397
 
398
//    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
399
//    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
400
//    int dist[9];
401
//    dist[3] = index_northsouth * 2 + 1; // south
402
//    dist[1] = index_eastwest * 2 + 1; // west
403
//    dist[5] = 10 - dist[3]; // north
404
//    dist[7] = 10 - dist[1]; // east
405
//    dist[8] = qMax(dist[5], dist[7]); // north-east
406
//    dist[6] = qMax(dist[3], dist[7]); // south-east
407
//    dist[0] = qMax(dist[3], dist[1]); // south-west
408
//    dist[2] = qMax(dist[5], dist[1]); // north-west
409
//    dist[4] = 0; // center cell
410
//    /* the scheme of indices is as follows:  if sign(ix)= -1, if ix<0, 0 for ix=0, 1 for ix>0 (detto iy), then:
411
//       index = 4 + 3*sign(ix) + sign(iy) transforms combinations of directions to unique ids (0..8), which are used above.
412
//        e.g.: sign(ix) = -1, sign(iy) = 1 (=north-west) -> index = 4 + -3 + 1 = 2
413
//    */
414
//
415
//
416
//    int ringcount = int(floor(mHeight / cellsize)) + 1;
417
//    int ix, iy;
418
//    int ring;
419
//    float hdom;
420
//    for (ix=-ringcount;ix<=ringcount;ix++)
421
//        for (iy=-ringcount; iy<=+ringcount; iy++) {
422
//        ring = qMax(abs(ix), abs(iy));
423
//        QPoint pos(ix+p.x(), iy+p.y());
424
//        QPoint p_torus(torusIndex(pos.x(),10,bufferOffset,ru_offset.x()),
425
//                       torusIndex(pos.y(),10,bufferOffset,ru_offset.y()));
426
//        if (mHeightGrid->isIndexValid(p_torus)) {
427
//            float &rHGrid = mHeightGrid->valueAtIndex(p_torus.x(),p_torus.y()).height;
428
//            if (rHGrid > mHeight) // skip calculation if grid is higher than tree
429
//                continue;
430
//            int direction = 4 + (ix?(ix<0?-3:3):0) + (iy?(iy<0?-1:1):0); // 4 + 3*sgn(x) + sgn(y)
431
//            hdom = mHeight - dist[direction];
432
//            if (ring>1)
433
//                hdom -= (ring-1)*10;
434
//
435
//            rHGrid = qMax(rHGrid, hdom); // write value
436
//        } // is valid
437
//    } // for (y)
438
}
439
 
440
 
718 werner 441
/** reads the light influence field value for a tree.
442
    The LIF field is scanned within the crown area of the focal tree, and the influence of
443
    the focal tree is "subtracted" from the LIF values.
444
    Finally, the "LRI correction" is applied.
445
    see http://iland.boku.ac.at/competition+for+light for details.
446
  */
158 werner 447
void Tree::readLIF()
40 Werner 448
{
106 Werner 449
    if (!mStamp)
155 werner 450
        return;
451
    const Stamp *reader = mStamp->reader();
452
    if (!reader)
453
        return;
156 werner 454
    QPoint pos_reader = mPositionIndex;
780 werner 455
    const float outside_area_factor = 0.1f; //
155 werner 456
 
457
    int offset_reader = reader->offset();
458
    int offset_writer = mStamp->offset();
459
    int d_offset = offset_writer - offset_reader; // offset on the *stamp* to the crown-cells
460
 
461
    pos_reader-=QPoint(offset_reader, offset_reader);
40 Werner 462
 
155 werner 463
    float local_dom;
464
 
40 Werner 465
    int x,y;
466
    double sum=0.;
155 werner 467
    double value, own_value;
468
    float *grid_value;
403 werner 469
    float z, z_zstar;
155 werner 470
    int reader_size = reader->size();
471
    int rx = pos_reader.x();
472
    int ry = pos_reader.y();
473
    for (y=0;y<reader_size; ++y, ++ry) {
474
        grid_value = mGrid->ptr(rx, ry);
475
        for (x=0;x<reader_size;++x) {
476
 
718 werner 477
            const HeightGridValue &hgv = mHeightGrid->constValueAtIndex((rx+x)/cPxPerHeight, ry/cPxPerHeight); // the height grid value, ry: gets ++ed in outer loop, rx not
478
            local_dom = hgv.height;
884 werner 479
            z = std::max(mHeight - reader->distanceToCenter(x,y), 0.f); // distance to center = height (45 degree line)
403 werner 480
            z_zstar = (z>=local_dom)?1.f:z/local_dom;
155 werner 481
 
403 werner 482
            own_value = 1. - mStamp->offsetValue(x,y,d_offset)*mOpacity * z_zstar;
155 werner 483
            own_value = qMax(own_value, 0.02);
484
            value =  *grid_value++ / own_value; // remove impact of focal tree
720 werner 485
            // additional punishment if pixel is outside:
718 werner 486
            if (hgv.isForestOutside())
720 werner 487
               value *= outside_area_factor;
403 werner 488
 
489
            //qDebug() << x << y << local_dom << z << z_zstar << own_value << value << *(grid_value-1) << (*reader)(x,y) << mStamp->offsetValue(x,y,d_offset);
155 werner 490
            //if (value>0.)
491
            sum += value * (*reader)(x,y);
492
 
40 Werner 493
        }
494
    }
1102 werner 495
    mLRI = static_cast<float>( sum );
426 werner 496
    // LRI correction...
497
    double hrel = mHeight / mHeightGrid->valueAtIndex(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight).height;
498
    if (hrel<1.)
1102 werner 499
        mLRI = static_cast<float>( species()->speciesSet()->LRIcorrection(mLRI, hrel) );
426 werner 500
 
403 werner 501
 
155 werner 502
    if (mLRI > 1.)
503
        mLRI = 1.;
206 werner 504
 
505
    // Finally, add LRI of this Tree to the ResourceUnit!
251 werner 506
    mRU->addWLA(mLeafArea, mLRI);
206 werner 507
 
155 werner 508
    //qDebug() << "Tree #"<< id() << "value" << sum << "Impact" << mImpact;
40 Werner 509
}
510
 
155 werner 511
/// Torus version of read stamp (glued edges)
158 werner 512
void Tree::readLIF_torus()
78 Werner 513
{
106 Werner 514
    if (!mStamp)
107 Werner 515
        return;
106 Werner 516
    const Stamp *reader = mStamp->reader();
78 Werner 517
    if (!reader)
107 Werner 518
        return;
295 werner 519
    int bufferOffset = mGrid->indexAt(QPointF(0.,0.)).x(); // offset of buffer
78 Werner 520
 
387 werner 521
    QPoint pos_reader = QPoint((mPositionIndex.x()-bufferOffset)%cPxPerRU + bufferOffset,
522
                               (mPositionIndex.y()-bufferOffset)%cPxPerRU + bufferOffset); // offset within the ha
295 werner 523
    QPoint ru_offset = QPoint(mPositionIndex.x() - pos_reader.x(), mPositionIndex.y() - pos_reader.y()); // offset of the corner of the resource index
524
 
78 Werner 525
    int offset_reader = reader->offset();
106 Werner 526
    int offset_writer = mStamp->offset();
78 Werner 527
    int d_offset = offset_writer - offset_reader; // offset on the *stamp* to the crown-cells
528
 
529
    pos_reader-=QPoint(offset_reader, offset_reader);
530
 
531
    float local_dom;
532
 
533
    int x,y;
534
    double sum=0.;
535
    double value, own_value;
536
    float *grid_value;
407 werner 537
    float z, z_zstar;
78 Werner 538
    int reader_size = reader->size();
539
    int rx = pos_reader.x();
540
    int ry = pos_reader.y();
155 werner 541
    int xt, yt; // wrapped coords
542
 
397 werner 543
    for (y=0;y<reader_size; ++y) {
544
        yt = torusIndex(ry+y,cPxPerRU, bufferOffset, ru_offset.y());
78 Werner 545
        for (x=0;x<reader_size;++x) {
387 werner 546
            xt = torusIndex(rx+x,cPxPerRU, bufferOffset, ru_offset.x());
155 werner 547
            grid_value = mGrid->ptr(xt,yt);
407 werner 548
 
387 werner 549
            local_dom = mHeightGrid->valueAtIndex(xt/cPxPerHeight, yt/cPxPerHeight).height; // ry: gets ++ed in outer loop, rx not
884 werner 550
            z = std::max(mHeight - reader->distanceToCenter(x,y), 0.f); // distance to center = height (45 degree line)
407 werner 551
            z_zstar = (z>=local_dom)?1.f:z/local_dom;
125 Werner 552
 
407 werner 553
            own_value = 1. - mStamp->offsetValue(x,y,d_offset)*mOpacity * z_zstar;
554
            // old: own_value = 1. - mStamp->offsetValue(x,y,d_offset)*mOpacity / local_dom; // old: dom_height;
78 Werner 555
            own_value = qMax(own_value, 0.02);
407 werner 556
            value =  *grid_value++ / own_value; // remove impact of focal tree
557
 
397 werner 558
            // debug for one tree in HJA
559
            //if (id()==178020)
560
            //    qDebug() << x << y << xt << yt << *grid_value << local_dom << own_value << value << (*reader)(x,y);
321 werner 561
            //if (_isnan(value))
562
            //    qDebug() << "isnan" << id();
397 werner 563
            if (value * (*reader)(x,y)>1.)
564
                qDebug() << "LIFTorus: value>1.";
78 Werner 565
            sum += value * (*reader)(x,y);
566
 
567
            //} // isIndexValid
568
        }
569
    }
1102 werner 570
    mLRI = static_cast<float>( sum );
426 werner 571
 
572
    // LRI correction...
573
    double hrel = mHeight / mHeightGrid->valueAtIndex(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight).height;
574
    if (hrel<1.)
1102 werner 575
        mLRI = static_cast<float>( species()->speciesSet()->LRIcorrection(mLRI, hrel) );
426 werner 576
 
577
 
615 werner 578
    if (isnan(mLRI)) {
321 werner 579
        qDebug() << "LRI invalid (nan)!" << id();
580
        mLRI=0.;
581
        //qDebug() << reader->dump();
582
    }
148 iland 583
    if (mLRI > 1.)
584
        mLRI = 1.;
78 Werner 585
    //qDebug() << "Tree #"<< id() << "value" << sum << "Impact" << mImpact;
205 werner 586
 
587
    // Finally, add LRI of this Tree to the ResourceUnit!
251 werner 588
    mRU->addWLA(mLeafArea, mLRI);
58 Werner 589
}
590
 
155 werner 591
 
40 Werner 592
void Tree::resetStatistics()
593
{
594
    m_statPrint=0;
105 Werner 595
    m_statCreated=0;
48 Werner 596
    m_statAboveZ=0;
40 Werner 597
    m_nextId=1;
598
}
107 Werner 599
 
1072 werner 600
#ifdef ALT_TREE_MORTALITY
1071 werner 601
void Tree::mortalityParams(double dbh_inc_threshold, int stress_years, double stress_mort_prob)
602
{
603
    _stress_threshold = dbh_inc_threshold;
604
    _stress_years = stress_years;
605
    _stress_death_prob = stress_mort_prob;
606
    qDebug() << "Alternative Mortality enabled: threshold" << dbh_inc_threshold << ", years:" << _stress_years << ", level:" << _stress_death_prob;
607
}
1072 werner 608
#endif
1071 werner 609
 
251 werner 610
void Tree::calcLightResponse()
611
{
612
    // calculate a light response from lri:
298 werner 613
    // http://iland.boku.ac.at/individual+tree+light+availability
470 werner 614
    double lri = limit(mLRI * mRU->LRImodifier(), 0., 1.); // Eq. (3)
1102 werner 615
    mLightResponse = static_cast<float>( mSpecies->lightResponse(lri) ); // Eq. (4)
251 werner 616
    mRU->addLR(mLeafArea, mLightResponse);
617
 
618
}
619
 
110 Werner 620
//////////////////////////////////////////////////
621
////  Growth Functions
622
//////////////////////////////////////////////////
107 Werner 623
 
227 werner 624
/** grow() is the main function of the yearly tree growth.
625
  The main steps are:
298 werner 626
  - Production of GPP/NPP   @sa http://iland.boku.ac.at/primary+production http://iland.boku.ac.at/individual+tree+light+availability
627
  - Partitioning of NPP to biomass compartments of the tree @sa http://iland.boku.ac.at/allocation
227 werner 628
  - Growth of the stem http://iland.boku.ac.at/stem+growth (???)
387 werner 629
  Further activties: * the age of the tree is increased
630
                     * the mortality sub routine is executed
631
                     * seeds are produced */
107 Werner 632
void Tree::grow()
633
{
159 werner 634
    TreeGrowthData d;
169 werner 635
    mAge++; // increase age
230 werner 636
    // step 1: get "interception area" of the tree individual [m2]
637
    // the sum of all area of all trees of a unit equal the total stocked area * interception_factor(Beer-Lambert)
638
    double effective_area = mRU->interceptedArea(mLeafArea, mLightResponse);
107 Werner 639
 
230 werner 640
    // step 2: calculate GPP of the tree based
641
    // (1) get the amount of GPP for a "unit area" of the tree species
642
    double raw_gpp_per_area = mRU->resourceUnitSpecies(species()).prod3PG().GPPperArea();
643
    // (2) GPP (without aging-effect) in kg Biomass / year
644
    double raw_gpp = raw_gpp_per_area * effective_area;
161 werner 645
 
227 werner 646
    // apply aging according to the state of the individuum
388 werner 647
    const double aging_factor = mSpecies->aging(mHeight, mAge);
376 werner 648
    mRU->addTreeAging(mLeafArea, aging_factor);
227 werner 649
    double gpp = raw_gpp * aging_factor; //
608 werner 650
    d.NPP = gpp * cAutotrophicRespiration; // respiration loss (0.47), cf. Waring et al 1998.
113 Werner 651
 
279 werner 652
    //DBGMODE(
137 Werner 653
        if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dTreeNPP) && isDebugging()) {
133 Werner 654
            DebugList &out = GlobalSettings::instance()->debugList(mId, GlobalSettings::dTreeNPP);
655
            dumpList(out); // add tree headers
299 werner 656
            out << mLRI * mRU->LRImodifier() << mLightResponse << effective_area << raw_gpp << gpp << d.NPP << aging_factor;
133 Werner 657
        }
279 werner 658
    //); // DBGMODE()
217 werner 659
    if (d.NPP>0.)
660
        partitioning(d); // split npp to compartments and grow (diameter, height)
133 Werner 661
 
387 werner 662
    // mortality
1071 werner 663
#ifdef ALT_TREE_MORTALITY
664
    // alternative variant of tree mortality (note: mStrssIndex used otherwise)
665
    altMortality(d);
666
 
667
#else
200 werner 668
    if (Model::settings().mortalityEnabled)
669
        mortality(d);
110 Werner 670
 
159 werner 671
    mStressIndex = d.stress_index;
1071 werner 672
#endif
180 werner 673
 
674
    if (!isDead())
257 werner 675
        mRU->resourceUnitSpecies(species()).statistics().add(this, &d);
277 werner 676
 
387 werner 677
    // regeneration
460 werner 678
    mSpecies->seedProduction(mAge, mHeight, mPositionIndex);
387 werner 679
 
107 Werner 680
}
681
 
227 werner 682
/** partitioning of this years assimilates (NPP) to biomass compartments.
298 werner 683
  Conceptionally, the algorithm is based on Duursma, 2007.
684
  @sa http://iland.boku.ac.at/allocation */
159 werner 685
inline void Tree::partitioning(TreeGrowthData &d)
115 Werner 686
{
159 werner 687
    double npp = d.NPP;
115 Werner 688
    // add content of reserve pool
116 Werner 689
    npp += mNPPReserve;
159 werner 690
    const double foliage_mass_allo = species()->biomassFoliage(mDbh);
276 werner 691
    const double reserve_size = foliage_mass_allo * (1. + mSpecies->finerootFoliageRatio());
297 werner 692
    double refill_reserve = qMin(reserve_size, (1. + mSpecies->finerootFoliageRatio())*mFoliageMass); // not always try to refill reserve 100%
119 Werner 693
 
136 Werner 694
    double apct_wood, apct_root, apct_foliage; // allocation percentages (sum=1) (eta)
468 werner 695
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
117 Werner 696
    // turnover rates
159 werner 697
    const double &to_fol = species()->turnoverLeaf();
698
    const double &to_root = species()->turnoverRoot();
136 Werner 699
    // the turnover rate of wood depends on the size of the reserve pool:
116 Werner 700
 
136 Werner 701
 
163 werner 702
    double to_wood = refill_reserve / (mWoodyMass + refill_reserve);
703
 
468 werner 704
    apct_root = rus.prod3PG().rootFraction();
261 werner 705
    d.NPP_above = d.NPP * (1. - apct_root); // aboveground: total NPP - fraction to roots
298 werner 706
    double b_wf = species()->allometricRatio_wf(); // ratio of allometric exponents (b_woody / b_foliage)
117 Werner 707
 
708
    // Duursma 2007, Eq. (20)
167 werner 709
    apct_wood = (foliage_mass_allo*to_wood/npp + b_wf*(1.-apct_root) - b_wf*foliage_mass_allo*to_fol/npp) / ( foliage_mass_allo/mWoodyMass + b_wf );
902 werner 710
 
711
    apct_wood = limit(apct_wood, 0., 1.-apct_root);
712
 
117 Werner 713
    apct_foliage = 1. - apct_root - apct_wood;
714
 
163 werner 715
 
902 werner 716
    DBGMODE(
163 werner 717
            if (apct_foliage<0 || apct_wood<0)
718
                qDebug() << "transfer to foliage or wood < 0";
719
             if (npp<0)
720
                 qDebug() << "NPP < 0";
902 werner 721
            );
163 werner 722
 
136 Werner 723
    // Change of biomass compartments
276 werner 724
    double sen_root = mFineRootMass * to_root;
725
    double sen_foliage = mFoliageMass * to_fol;
521 werner 726
    if (ru()->snag())
588 werner 727
        ru()->snag()->addTurnoverLitter(this->species(), sen_foliage, sen_root);
298 werner 728
 
136 Werner 729
    // Roots
298 werner 730
    // http://iland.boku.ac.at/allocation#belowground_NPP
276 werner 731
    mFineRootMass -= sen_root; // reduce only fine root pool
732
    double delta_root = apct_root * npp;
733
    // 1st, refill the fine root pool
734
    double fineroot_miss = mFoliageMass * mSpecies->finerootFoliageRatio() - mFineRootMass;
735
    if (fineroot_miss>0.){
736
        double delta_fineroot = qMin(fineroot_miss, delta_root);
737
        mFineRootMass += delta_fineroot;
738
        delta_root -= delta_fineroot;
739
    }
740
    // 2nd, the rest of NPP allocated to roots go to coarse roots
595 werner 741
    double max_coarse_root = species()->biomassRoot(mDbh);
276 werner 742
    mCoarseRootMass += delta_root;
595 werner 743
    if (mCoarseRootMass > max_coarse_root) {
744
        // if the coarse root pool exceeds the value given by the allometry, then the
745
        // surplus is accounted as turnover
746
        if (ru()->snag())
747
            ru()->snag()->addTurnoverWood(species(), mCoarseRootMass-max_coarse_root);
119 Werner 748
 
1102 werner 749
        mCoarseRootMass = static_cast<float>( max_coarse_root );
595 werner 750
    }
751
 
136 Werner 752
    // Foliage
159 werner 753
    double delta_foliage = apct_foliage * npp - sen_foliage;
137 Werner 754
    mFoliageMass += delta_foliage;
615 werner 755
    if (isnan(mFoliageMass))
217 werner 756
        qDebug() << "foliage mass invalid!";
163 werner 757
    if (mFoliageMass<0.) mFoliageMass=0.; // limit to zero
758
 
1102 werner 759
    mLeafArea = static_cast<float>( mFoliageMass * species()->specificLeafArea() ); // update leaf area
119 Werner 760
 
271 werner 761
    // stress index: different varaints at denominator: to_fol*foliage_mass = leafmass to rebuild,
198 werner 762
    // foliage_mass_allo: simply higher chance for stress
271 werner 763
    // note: npp = NPP + reserve (see above)
276 werner 764
    d.stress_index =qMax(1. - (npp) / ( to_fol*foliage_mass_allo + to_root*foliage_mass_allo*species()->finerootFoliageRatio() + reserve_size), 0.);
198 werner 765
 
136 Werner 766
    // Woody compartments
298 werner 767
    // see also: http://iland.boku.ac.at/allocation#reserve_and_allocation_to_stem_growth
136 Werner 768
    // (1) transfer to reserve pool
769
    double gross_woody = apct_wood * npp;
770
    double to_reserve = qMin(reserve_size, gross_woody);
1102 werner 771
    mNPPReserve = static_cast<float>( to_reserve );
136 Werner 772
    double net_woody = gross_woody - to_reserve;
137 Werner 773
    double net_stem = 0.;
164 werner 774
    mDbhDelta = 0.;
165 werner 775
 
776
 
136 Werner 777
    if (net_woody > 0.) {
778
        // (2) calculate part of increment that is dedicated to the stem (which is a function of diameter)
159 werner 779
        net_stem = net_woody * species()->allometricFractionStem(mDbh);
780
        d.NPP_stem = net_stem;
137 Werner 781
        mWoodyMass += net_woody;
136 Werner 782
        //  (3) growth of diameter and height baseed on net stem increment
159 werner 783
        grow_diameter(d);
136 Werner 784
    }
119 Werner 785
 
279 werner 786
    //DBGMODE(
137 Werner 787
     if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dTreePartition)
788
         && isDebugging() ) {
129 Werner 789
            DebugList &out = GlobalSettings::instance()->debugList(mId, GlobalSettings::dTreePartition);
790
            dumpList(out); // add tree headers
136 Werner 791
            out << npp << apct_foliage << apct_wood << apct_root
276 werner 792
                    << delta_foliage << net_woody << delta_root << mNPPReserve << net_stem << d.stress_index;
137 Werner 793
     }
144 Werner 794
 
279 werner 795
    //); // DBGMODE()
497 werner 796
    DBGMODE(
428 werner 797
      if (mWoodyMass<0. || mWoodyMass>50000 || mFoliageMass<0. || mFoliageMass>2000. || mCoarseRootMass<0. || mCoarseRootMass>30000
393 werner 798
         || mNPPReserve>4000.) {
389 werner 799
         qDebug() << "Tree:partitioning: invalid or unlikely pools.";
144 Werner 800
         qDebug() << GlobalSettings::instance()->debugListCaptions(GlobalSettings::DebugOutputs(0));
801
         DebugList dbg; dumpList(dbg);
802
         qDebug() << dbg;
497 werner 803
     } );
144 Werner 804
 
136 Werner 805
    /*DBG_IF_X(mId == 1 , "Tree::partitioning", "dump", dump()
806
             + QString("npp %1 npp_reserve %9 sen_fol %2 sen_stem %3 sen_root %4 net_fol %5 net_stem %6 net_root %7 to_reserve %8")
807
               .arg(npp).arg(senescence_foliage).arg(senescence_stem).arg(senescence_root)
808
               .arg(net_foliage).arg(net_stem).arg(net_root).arg(to_reserve).arg(mNPPReserve) );*/
129 Werner 809
 
115 Werner 810
}
811
 
125 Werner 812
 
134 Werner 813
/** Determination of diamter and height growth based on increment of the stem mass (@p net_stem_npp).
125 Werner 814
    Refer to XXX for equations and variables.
815
    This function updates the dbh and height of the tree.
227 werner 816
    The equations are based on dbh in meters! */
159 werner 817
inline void Tree::grow_diameter(TreeGrowthData &d)
119 Werner 818
{
819
    // determine dh-ratio of increment
820
    // height increment is a function of light competition:
125 Werner 821
    double hd_growth = relative_height_growth(); // hd of height growth
153 werner 822
    double d_m = mDbh / 100.; // current diameter in [m]
159 werner 823
    double net_stem_npp = d.NPP_stem;
824
 
153 werner 825
    const double d_delta_m = mDbhDelta / 100.; // increment of last year in [m]
115 Werner 826
 
159 werner 827
    const double mass_factor = species()->volumeFactor() * species()->density();
153 werner 828
    double stem_mass = mass_factor * d_m*d_m * mHeight; // result: kg, dbh[cm], h[meter]
123 Werner 829
 
153 werner 830
    // factor is in diameter increment per NPP [m/kg]
831
    double factor_diameter = 1. / (  mass_factor * (d_m + d_delta_m)*(d_m + d_delta_m) * ( 2. * mHeight/d_m + hd_growth) );
125 Werner 832
    double delta_d_estimate = factor_diameter * net_stem_npp; // estimated dbh-inc using last years increment
833
 
834
    // using that dbh-increment we estimate a stem-mass-increment and the residual (Eq. 9)
153 werner 835
    double stem_estimate = mass_factor * (d_m + delta_d_estimate)*(d_m + delta_d_estimate)*(mHeight + delta_d_estimate*hd_growth);
137 Werner 836
    double stem_residual = stem_estimate - (stem_mass + net_stem_npp);
125 Werner 837
 
838
    // the final increment is then:
839
    double d_increment = factor_diameter * (net_stem_npp - stem_residual); // Eq. (11)
463 werner 840
    double res_final  = 0.;
841
    if (fabs(stem_residual) > 1.) {
465 werner 842
 
463 werner 843
        // calculate final residual in stem
844
        res_final = mass_factor * (d_m + d_increment)*(d_m + d_increment)*(mHeight + d_increment*hd_growth)-((stem_mass + net_stem_npp));
845
        if (fabs(res_final)>1.) {
465 werner 846
            // for large errors in stem biomass due to errors in diameter increment (> 1kg), we solve the increment iteratively.
463 werner 847
            // first, increase increment with constant step until we overestimate the first time
848
            // then,
849
            d_increment = 0.02; // start with 2cm increment
850
            bool reached_error = false;
851
            double step=0.01; // step-width 1cm
852
            double est_stem;
853
            do {
854
                est_stem = mass_factor * (d_m + d_increment)*(d_m + d_increment)*(mHeight + d_increment*hd_growth); // estimate with current increment
855
                stem_residual = est_stem - (stem_mass + net_stem_npp);
856
 
857
                if (fabs(stem_residual) <1.) // finished, if stem residual below 1kg
858
                    break;
859
                if (stem_residual > 0.) {
860
                    d_increment -= step;
861
                    reached_error=true;
862
                } else {
863
                    d_increment += step;
864
                }
865
                if (reached_error)
866
                    step /= 2.;
867
            } while (step>0.00001); // continue until diameter "accuracy" falls below 1/100mm
868
        }
869
    }
870
 
871
    if (d_increment<0.f)
872
        qDebug() << "Tree::grow_diameter: d_inc < 0.";
144 Werner 873
    DBG_IF_X(d_increment<0. || d_increment>0.1, "Tree::grow_dimater", "increment out of range.", dump()
125 Werner 874
             + QString("\nhdz %1 factor_diameter %2 stem_residual %3 delta_d_estimate %4 d_increment %5 final residual(kg) %6")
875
               .arg(hd_growth).arg(factor_diameter).arg(stem_residual).arg(delta_d_estimate).arg(d_increment)
142 Werner 876
               .arg( mass_factor * (mDbh + d_increment)*(mDbh + d_increment)*(mHeight + d_increment*hd_growth)-((stem_mass + net_stem_npp)) ));
125 Werner 877
 
303 werner 878
    //DBGMODE(
463 werner 879
        // do not calculate res_final twice if already done
880
        DBG_IF_X( (res_final==0.?fabs(mass_factor * (d_m + d_increment)*(d_m + d_increment)*(mHeight + d_increment*hd_growth)-((stem_mass + net_stem_npp))):res_final) > 1, "Tree::grow_diameter", "final residual stem estimate > 1kg", dump());
153 werner 881
        DBG_IF_X(d_increment > 10. || d_increment*hd_growth >10., "Tree::grow_diameter", "growth out of bound:",QString("d-increment %1 h-increment %2 ").arg(d_increment).arg(d_increment*hd_growth/100.) + dump());
158 werner 882
 
137 Werner 883
        if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dTreeGrowth) && isDebugging() ) {
126 Werner 884
            DebugList &out = GlobalSettings::instance()->debugList(mId, GlobalSettings::dTreeGrowth);
129 Werner 885
            dumpList(out); // add tree headers
143 Werner 886
            out << net_stem_npp << stem_mass << hd_growth << factor_diameter << delta_d_estimate*100 << d_increment*100;
126 Werner 887
        }
153 werner 888
 
303 werner 889
    //); // DBGMODE()
125 Werner 890
 
891
    d_increment = qMax(d_increment, 0.);
892
 
893
    // update state variables
1102 werner 894
    mDbh += d_increment*100.f; // convert from [m] to [cm]
895
    mDbhDelta = static_cast<float>( d_increment*100. ); // save for next year's growth
153 werner 896
    mHeight += d_increment * hd_growth;
158 werner 897
 
898
    // update state of LIP stamp and opacity
159 werner 899
    mStamp = species()->stamp(mDbh, mHeight); // get new stamp for updated dimensions
158 werner 900
    // calculate the CrownFactor which reflects the opacity of the crown
200 werner 901
    const double k=Model::settings().lightExtinctionCoefficientOpacity;
1102 werner 902
    mOpacity = static_cast<float>( 1. - exp(-k * mLeafArea / mStamp->crownArea()) );
158 werner 903
 
119 Werner 904
}
905
 
125 Werner 906
 
907
/// return the HD ratio of this year's increment based on the light status.
119 Werner 908
inline double Tree::relative_height_growth()
909
{
910
    double hd_low, hd_high;
911
    mSpecies->hdRange(mDbh, hd_low, hd_high);
912
 
125 Werner 913
    DBG_IF_X(hd_low>hd_high, "Tree::relative_height_growth", "hd low higher dann hd_high for ", dump());
949 werner 914
    DBG_IF_X(hd_low < 10 || hd_high>250, "Tree::relative_height_growth", "hd out of range ", dump() + QString(" hd-low: %1 hd-high: %2").arg(hd_low).arg(hd_high));
125 Werner 915
 
916
    // scale according to LRI: if receiving much light (LRI=1), the result is hd_low (for open grown trees)
326 werner 917
    // use the corrected LRI (see tracker#11)
918
    double lri = limit(mLRI * mRU->LRImodifier(),0.,1.);
919
    double hd_ratio = hd_high - (hd_high-hd_low)*lri;
125 Werner 920
    return hd_ratio;
119 Werner 921
}
141 Werner 922
 
278 werner 923
/** This function is called if a tree dies.
924
  @sa ResourceUnit::cleanTreeList(), remove() */
277 werner 925
void Tree::die(TreeGrowthData *d)
926
{
927
    setFlag(Tree::TreeDead, true); // set flag that tree is dead
664 werner 928
    mRU->treeDied();
468 werner 929
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
930
    rus.statisticsDead().add(this, d); // add tree to statistics
1064 werner 931
    notifyTreeRemoved(TreeDeath);
521 werner 932
    if (ru()->snag())
933
        ru()->snag()->addMortality(this);
277 werner 934
}
935
 
903 werner 936
/// remove a tree (most likely due to harvest) from the system.
564 werner 937
void Tree::remove(double removeFoliage, double removeBranch, double removeStem )
278 werner 938
{
939
    setFlag(Tree::TreeDead, true); // set flag that tree is dead
1050 werner 940
    setIsHarvested();
664 werner 941
    mRU->treeDied();
468 werner 942
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
943
    rus.statisticsMgmt().add(this, 0);
1064 werner 944
    notifyTreeRemoved(TreeHarvest);
903 werner 945
 
521 werner 946
    if (ru()->snag())
564 werner 947
        ru()->snag()->addHarvest(this, removeStem, removeBranch, removeFoliage);
278 werner 948
}
949
 
713 werner 950
/// remove the tree due to an special event (disturbance)
903 werner 951
/// this is +- the same as die().
713 werner 952
void Tree::removeDisturbance(const double stem_to_soil_fraction, const double stem_to_snag_fraction, const double branch_to_soil_fraction, const double branch_to_snag_fraction, const double foliage_to_soil_fraction)
953
{
954
    setFlag(Tree::TreeDead, true); // set flag that tree is dead
955
    mRU->treeDied();
956
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
714 werner 957
    rus.statisticsDead().add(this, 0);
1064 werner 958
    notifyTreeRemoved(TreeDisturbance);
903 werner 959
 
1088 werner 960
 
1100 werner 961
    if (ru()->snag()) {
1102 werner 962
        if (isHarvested()) { // if the tree is harvested, do the same as in normal tree harvest (but with default values)
1088 werner 963
            ru()->snag()->addHarvest(this, 1., 0., 0.);
1102 werner 964
        } else {
1088 werner 965
            ru()->snag()->addDisturbance(this, stem_to_snag_fraction, stem_to_soil_fraction, branch_to_snag_fraction, branch_to_soil_fraction, foliage_to_soil_fraction);
1102 werner 966
        }
1100 werner 967
    }
713 werner 968
}
969
 
903 werner 970
/// remove a part of the biomass of the tree, e.g. due to fire.
971
void Tree::removeBiomassOfTree(const double removeFoliageFraction, const double removeBranchFraction, const double removeStemFraction)
668 werner 972
{
973
    mFoliageMass *= 1. - removeFoliageFraction;
974
    mWoodyMass *= (1. - removeStemFraction);
975
    // we have a problem with the branches: this currently cannot be done properly!
766 werner 976
    (void) removeBranchFraction; // silence warning
668 werner 977
}
978
 
975 werner 979
void Tree::setHeight(const float height)
980
{
981
    if (height<=0. || height>150.)
982
        qWarning() << "trying to set tree height to invalid value:" << height << " for tree on RU:" << (mRU?mRU->boundingBox():QRect());
983
    mHeight=height;
984
}
985
 
159 werner 986
void Tree::mortality(TreeGrowthData &d)
987
{
163 werner 988
    // death if leaf area is 0
989
    if (mFoliageMass<0.00001)
990
        die();
991
 
308 werner 992
    double p_death,  p_stress, p_intrinsic;
993
    p_intrinsic = species()->deathProb_intrinsic();
994
    p_stress = species()->deathProb_stress(d.stress_index);
995
    p_death =  p_intrinsic + p_stress;
707 werner 996
    double p = drandom(); //0..1
159 werner 997
    if (p<p_death) {
998
        // die...
999
        die();
1000
    }
1001
}
141 Werner 1002
 
1072 werner 1003
#ifdef ALT_TREE_MORTALITY
1071 werner 1004
void Tree::altMortality(TreeGrowthData &d)
1005
{
1006
    // death if leaf area is 0
1007
    if (mFoliageMass<0.00001)
1008
        die();
1009
 
1010
    double  p_intrinsic, p_stress=0.;
1011
    p_intrinsic = species()->deathProb_intrinsic();
1012
 
1013
    if (mDbhDelta < _stress_threshold) {
1014
        mStressIndex++;
1015
        if (mStressIndex> _stress_years)
1016
            p_stress = _stress_death_prob;
1017
    } else
1018
        mStressIndex = 0;
1019
 
1020
    double p = drandom(); //0..1
1021
    if (p<p_intrinsic + p_stress) {
1022
        // die...
1023
        die();
1024
    }
1025
}
1072 werner 1026
#endif
1071 werner 1027
 
1064 werner 1028
void Tree::notifyTreeRemoved(TreeRemovalType reason)
903 werner 1029
{
1030
    // add the volume of the current tree to the height grid
1077 werner 1031
    // this information is used to track the removed volume for stands based on grids (and for salvaging operations)
909 werner 1032
    ABE::ForestManagementEngine *abe = GlobalSettings::instance()->model()->ABEngine();
1033
    if (abe)
1102 werner 1034
        abe->notifyTreeRemoval(this, static_cast<int>(reason));
1044 werner 1035
 
1036
    // tell disturbance modules that a tree died
1102 werner 1037
    GlobalSettings::instance()->model()->modules()->treeDeath(this, static_cast<int>(reason) );
1038
 
1039
    // create output for tree removals
1040
    if (mRemovalOutput && mRemovalOutput->isEnabled())
1041
        mRemovalOutput->execRemovedTree(this, static_cast<int>(reason));
1114 werner 1042
    if (mLSRemovalOutput && mLSRemovalOutput->isEnabled())
1043
        mLSRemovalOutput->execRemovedTree(this, static_cast<int>(reason));
903 werner 1044
}
1045
 
141 Werner 1046
//////////////////////////////////////////////////
1047
////  value functions
1048
//////////////////////////////////////////////////
1049
 
145 Werner 1050
double Tree::volume() const
141 Werner 1051
{
1052
    /// @see Species::volumeFactor() for details
159 werner 1053
    const double volume_factor = species()->volumeFactor();
157 werner 1054
    const double volume =  volume_factor * mDbh*mDbh*mHeight * 0.0001; // dbh in cm: cm/100 * cm/100 = cm*cm * 0.0001 = m2
141 Werner 1055
    return volume;
1056
}
180 werner 1057
 
579 werner 1058
/// return the basal area in m2
180 werner 1059
double Tree::basalArea() const
1060
{
1061
    // A = r^2 * pi = d/2*pi; from cm->m: d/200
1062
    const double b = (mDbh/200.)*(mDbh/200.)*M_PI;
1063
    return b;
1064
}
668 werner 1065