Subversion Repositories public iLand

Rev

Rev 1064 | Rev 1072 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1
 
671 werner 2
/********************************************************************************************
3
**    iLand - an individual based forest landscape and disturbance model
4
**    http://iland.boku.ac.at
5
**    Copyright (C) 2009-  Werner Rammer, Rupert Seidl
6
**
7
**    This program is free software: you can redistribute it and/or modify
8
**    it under the terms of the GNU General Public License as published by
9
**    the Free Software Foundation, either version 3 of the License, or
10
**    (at your option) any later version.
11
**
12
**    This program is distributed in the hope that it will be useful,
13
**    but WITHOUT ANY WARRANTY; without even the implied warranty of
14
**    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
**    GNU General Public License for more details.
16
**
17
**    You should have received a copy of the GNU General Public License
18
**    along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
********************************************************************************************/
117 Werner 20
#include "global.h"
21
#include "tree.h"
3 Werner 22
 
83 Werner 23
#include "grid.h"
3 Werner 24
 
83 Werner 25
#include "stamp.h"
90 Werner 26
#include "species.h"
189 iland 27
#include "resourceunit.h"
151 iland 28
#include "model.h"
468 werner 29
#include "snag.h"
38 Werner 30
 
904 werner 31
#include "forestmanagementengine.h"
1044 werner 32
#include "modules.h"
904 werner 33
 
1071 werner 34
 
35
 
110 Werner 36
// static varaibles
106 Werner 37
FloatGrid *Tree::mGrid = 0;
151 iland 38
HeightGrid *Tree::mHeightGrid = 0;
40 Werner 39
int Tree::m_statPrint=0;
48 Werner 40
int Tree::m_statAboveZ=0;
105 Werner 41
int Tree::m_statCreated=0;
40 Werner 42
int Tree::m_nextId=0;
43
 
1071 werner 44
#ifdef ALT_TREE_MORTALITY
45
double _stress_threshold = 0.05;
46
int _stress_years = 5;
47
double _stress_death_prob = 0.33;
48
#endif
49
 
697 werner 50
/** @class Tree
51
    @ingroup core
52
    A tree is the basic simulation entity of iLand and represents a single tree.
53
    Trees in iLand are designed to be lightweight, thus the list of stored properties is limited. Basic properties
54
    are dimensions (dbh, height), biomass pools (stem, leaves, roots), the reserve NPP pool. Additionally, the location and species are stored.
55
    A Tree has a height of at least 4m; trees below this threshold are covered by the regeneration layer (see Sapling).
56
    Trees are stored in lists managed at the resource unit level.
158 werner 57
 
697 werner 58
  */
257 werner 59
 
158 werner 60
/** get distance and direction between two points.
61
  returns the distance (m), and the angle between PStart and PEnd (radians) in referenced param rAngle. */
62
float dist_and_direction(const QPointF &PStart, const QPointF &PEnd, float &rAngle)
151 iland 63
{
158 werner 64
    float dx = PEnd.x() - PStart.x();
65
    float dy = PEnd.y() - PStart.y();
66
    float d = sqrt(dx*dx + dy*dy);
67
    // direction:
68
    rAngle = atan2(dx, dy);
69
    return d;
151 iland 70
}
71
 
158 werner 72
 
110 Werner 73
// lifecycle
3 Werner 74
Tree::Tree()
75
{
149 werner 76
    mDbh = mHeight = 0;
77
    mRU = 0; mSpecies = 0;
169 werner 78
    mFlags = mAge = 0;
276 werner 79
    mOpacity=mFoliageMass=mWoodyMass=mCoarseRootMass=mFineRootMass=mLeafArea=0.;
159 werner 80
    mDbhDelta=mNPPReserve=mLRI=mStressIndex=0.;
264 werner 81
    mLightResponse = 0.;
975 werner 82
    mStamp=0;
106 Werner 83
    mId = m_nextId++;
105 Werner 84
    m_statCreated++;
3 Werner 85
}
38 Werner 86
 
407 werner 87
float Tree::crownRadius() const
88
{
89
    Q_ASSERT(mStamp!=0);
90
    return mStamp->crownRadius();
91
}
92
 
476 werner 93
float Tree::biomassBranch() const
94
{
95
    return mSpecies->biomassBranch(mDbh);
96
}
97
 
158 werner 98
void Tree::setGrid(FloatGrid* gridToStamp, Grid<HeightGridValue> *dominanceGrid)
3 Werner 99
{
158 werner 100
    mGrid = gridToStamp; mHeightGrid = dominanceGrid;
3 Werner 101
}
102
 
667 werner 103
// calculate the thickness of the bark of the tree
104
double Tree::barkThickness() const
105
{
106
    return mSpecies->barkThickness(mDbh);
107
}
108
 
125 Werner 109
/// dumps some core variables of a tree to a string.
110
QString Tree::dump()
111
{
112
    QString result = QString("id %1 species %2 dbh %3 h %4 x/y %5/%6 ru# %7 LRI %8")
159 werner 113
                            .arg(mId).arg(species()->id()).arg(mDbh).arg(mHeight)
156 werner 114
                            .arg(position().x()).arg(position().y())
125 Werner 115
                            .arg(mRU->index()).arg(mLRI);
116
    return result;
117
}
3 Werner 118
 
129 Werner 119
void Tree::dumpList(DebugList &rTargetList)
120
{
159 werner 121
    rTargetList << mId << species()->id() << mDbh << mHeight  << position().x() << position().y()   << mRU->index() << mLRI
276 werner 122
                << mWoodyMass << mCoarseRootMass << mFoliageMass << mLeafArea;
129 Werner 123
}
124
 
38 Werner 125
void Tree::setup()
126
{
975 werner 127
    if (mDbh<=0 || mHeight<=0) {
128
        throw IException(QString("Error: trying to set up a tree with invalid dimensions: dbh: %1 height: %2 id: %3 RU-index: %4").arg(mDbh).arg(mHeight).arg(mId).arg(mRU->index()));
129
    }
38 Werner 130
    // check stamp
159 werner 131
    Q_ASSERT_X(species()!=0, "Tree::setup()", "species is NULL");
132
    mStamp = species()->stamp(mDbh, mHeight);
505 werner 133
    if (!mStamp) {
134
        throw IException("Tree::setup() with invalid stamp!");
135
    }
110 Werner 136
 
159 werner 137
    mFoliageMass = species()->biomassFoliage(mDbh);
276 werner 138
    mCoarseRootMass = species()->biomassRoot(mDbh); // coarse root (allometry)
139
    mFineRootMass = mFoliageMass * species()->finerootFoliageRatio(); //  fine root (size defined  by finerootFoliageRatio)
159 werner 140
    mWoodyMass = species()->biomassWoody(mDbh);
110 Werner 141
 
137 Werner 142
    // LeafArea[m2] = LeafMass[kg] * specificLeafArea[m2/kg]
159 werner 143
    mLeafArea = mFoliageMass * species()->specificLeafArea();
276 werner 144
    mOpacity = 1. - exp(- Model::settings().lightExtinctionCoefficientOpacity * mLeafArea / mStamp->crownArea());
145
    mNPPReserve = (1+species()->finerootFoliageRatio())*mFoliageMass; // initial value
780 werner 146
    mDbhDelta = 0.1f; // initial value: used in growth() to estimate diameter increment
376 werner 147
 
38 Werner 148
}
39 Werner 149
 
388 werner 150
void Tree::setAge(const int age, const float treeheight)
151
{
152
    mAge = age;
153
    if (age==0) {
154
        // estimate age using the tree height
155
        mAge = mSpecies->estimateAge(treeheight);
156
    }
157
}
158
 
110 Werner 159
//////////////////////////////////////////////////
160
////  Light functions (Pattern-stuff)
161
//////////////////////////////////////////////////
162
 
70 Werner 163
#define NOFULLDBG
77 Werner 164
//#define NOFULLOPT
39 Werner 165
 
40 Werner 166
 
158 werner 167
void Tree::applyLIP()
77 Werner 168
{
144 Werner 169
    if (!mStamp)
170
        return;
106 Werner 171
    Q_ASSERT(mGrid!=0 && mStamp!=0 && mRU!=0);
156 werner 172
    QPoint pos = mPositionIndex;
106 Werner 173
    int offset = mStamp->offset();
77 Werner 174
    pos-=QPoint(offset, offset);
175
 
176
    float local_dom; // height of Z* on the current position
177
    int x,y;
401 werner 178
    float value, z, z_zstar;
106 Werner 179
    int gr_stamp = mStamp->size();
705 werner 180
 
106 Werner 181
    if (!mGrid->isIndexValid(pos) || !mGrid->isIndexValid(pos+QPoint(gr_stamp, gr_stamp))) {
407 werner 182
        // this should not happen because of the buffer
77 Werner 183
        return;
184
    }
705 werner 185
    int grid_y = pos.y();
77 Werner 186
    for (y=0;y<gr_stamp; ++y) {
403 werner 187
 
705 werner 188
        float *grid_value_ptr = mGrid->ptr(pos.x(), grid_y);
189
        int grid_x = pos.x();
190
        for (x=0;x<gr_stamp;++x, ++grid_x, ++grid_value_ptr) {
77 Werner 191
            // suppose there is no stamping outside
106 Werner 192
            value = (*mStamp)(x,y); // stampvalue
705 werner 193
            //if (value>0.f) {
194
                local_dom = (*mHeightGrid)(grid_x/cPxPerHeight, grid_y/cPxPerHeight).height;
884 werner 195
                z = std::max(mHeight - (*mStamp).distanceToCenter(x,y), 0.f); // distance to center = height (45 degree line)
705 werner 196
                z_zstar = (z>=local_dom)?1.f:z/local_dom;
197
                value = 1. - value*mOpacity * z_zstar; // calculated value
198
                value = std::max(value, 0.02f); // limit value
77 Werner 199
 
705 werner 200
                *grid_value_ptr *= value;
201
            //}
403 werner 202
 
77 Werner 203
        }
403 werner 204
        grid_y++;
77 Werner 205
    }
206
 
207
    m_statPrint++; // count # of stamp applications...
208
}
209
 
155 werner 210
/// helper function for gluing the edges together
211
/// index: index at grid
212
/// count: number of pixels that are the simulation area (e.g. 100m and 2m pixel -> 50)
213
/// buffer: size of buffer around simulation area (in pixels)
295 werner 214
inline int torusIndex(int index, int count, int buffer, int ru_index)
155 werner 215
{
295 werner 216
    return buffer + ru_index + (index-buffer+count)%count;
155 werner 217
}
62 Werner 218
 
155 werner 219
 
220
/** Apply LIPs. This "Torus" functions wraps the influence at the edges of a 1ha simulation area.
221
  */
158 werner 222
void Tree::applyLIP_torus()
155 werner 223
{
224
    if (!mStamp)
225
        return;
226
    Q_ASSERT(mGrid!=0 && mStamp!=0 && mRU!=0);
295 werner 227
    int bufferOffset = mGrid->indexAt(QPointF(0.,0.)).x(); // offset of buffer
387 werner 228
    QPoint pos = QPoint((mPositionIndex.x()-bufferOffset)%cPxPerRU  + bufferOffset,
229
                        (mPositionIndex.y()-bufferOffset)%cPxPerRU + bufferOffset); // offset within the ha
295 werner 230
    QPoint ru_offset = QPoint(mPositionIndex.x() - pos.x(), mPositionIndex.y() - pos.y()); // offset of the corner of the resource index
155 werner 231
 
232
    int offset = mStamp->offset();
233
    pos-=QPoint(offset, offset);
234
 
235
    float local_dom; // height of Z* on the current position
236
    int x,y;
237
    float value;
238
    int gr_stamp = mStamp->size();
239
    int grid_x, grid_y;
240
    float *grid_value;
241
    if (!mGrid->isIndexValid(pos) || !mGrid->isIndexValid(pos+QPoint(gr_stamp, gr_stamp))) {
242
        // todo: in this case we should use another algorithm!!! necessary????
243
        return;
244
    }
407 werner 245
    float z, z_zstar;
155 werner 246
    int xt, yt; // wraparound coordinates
247
    for (y=0;y<gr_stamp; ++y) {
248
        grid_y = pos.y() + y;
387 werner 249
        yt = torusIndex(grid_y, cPxPerRU,bufferOffset, ru_offset.y()); // 50 cells per 100m
155 werner 250
        for (x=0;x<gr_stamp;++x) {
251
            // suppose there is no stamping outside
252
            grid_x = pos.x() + x;
387 werner 253
            xt = torusIndex(grid_x,cPxPerRU,bufferOffset, ru_offset.x());
155 werner 254
 
387 werner 255
            local_dom = mHeightGrid->valueAtIndex(xt/cPxPerHeight,yt/cPxPerHeight).height;
407 werner 256
 
884 werner 257
            z = std::max(mHeight - (*mStamp).distanceToCenter(x,y), 0.f); // distance to center = height (45 degree line)
407 werner 258
            z_zstar = (z>=local_dom)?1.f:z/local_dom;
155 werner 259
            value = (*mStamp)(x,y); // stampvalue
407 werner 260
            value = 1. - value*mOpacity * z_zstar; // calculated value
261
            // old: value = 1. - value*mOpacity / local_dom; // calculated value
155 werner 262
            value = qMax(value, 0.02f); // limit value
263
 
264
            grid_value = mGrid->ptr(xt, yt); // use wraparound coordinates
265
            *grid_value *= value;
266
        }
267
    }
268
 
269
    m_statPrint++; // count # of stamp applications...
270
}
271
 
74 Werner 272
/** heightGrid()
273
  This function calculates the "dominant height field". This grid is coarser as the fine-scaled light-grid.
274
*/
275
void Tree::heightGrid()
276
{
277
 
387 werner 278
    QPoint p = QPoint(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight); // pos of tree on height grid
74 Werner 279
 
151 iland 280
    // count trees that are on height-grid cells (used for stockable area)
285 werner 281
    mHeightGrid->valueAtIndex(p).increaseCount();
401 werner 282
    if (mHeight > mHeightGrid->valueAtIndex(p).height)
283
        mHeightGrid->valueAtIndex(p).height=mHeight;
406 werner 284
 
285
    int r = mStamp->reader()->offset(); // distance between edge and the center pixel. e.g.: if r = 2 -> stamp=5x5
286
    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
287
    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
288
    if (index_eastwest - r < 0) { // east
410 werner 289
        mHeightGrid->valueAtIndex(p.x()-1, p.y()).height=qMax(mHeightGrid->valueAtIndex(p.x()-1, p.y()).height,mHeight);
406 werner 290
    }
291
    if (index_eastwest + r >= cPxPerHeight) {  // west
410 werner 292
        mHeightGrid->valueAtIndex(p.x()+1, p.y()).height=qMax(mHeightGrid->valueAtIndex(p.x()+1, p.y()).height,mHeight);
406 werner 293
    }
294
    if (index_northsouth - r < 0) {  // south
410 werner 295
        mHeightGrid->valueAtIndex(p.x(), p.y()-1).height=qMax(mHeightGrid->valueAtIndex(p.x(), p.y()-1).height,mHeight);
406 werner 296
    }
297
    if (index_northsouth + r >= cPxPerHeight) {  // north
410 werner 298
        mHeightGrid->valueAtIndex(p.x(), p.y()+1).height=qMax(mHeightGrid->valueAtIndex(p.x(), p.y()+1).height,mHeight);
406 werner 299
    }
300
 
301
 
401 werner 302
    // without spread of the height grid
151 iland 303
 
401 werner 304
//    // height of Z*
305
//    const float cellsize = mHeightGrid->cellsize();
306
//
307
//    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
308
//    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
309
//    int dist[9];
310
//    dist[3] = index_northsouth * 2 + 1; // south
311
//    dist[1] = index_eastwest * 2 + 1; // west
312
//    dist[5] = 10 - dist[3]; // north
313
//    dist[7] = 10 - dist[1]; // east
314
//    dist[8] = qMax(dist[5], dist[7]); // north-east
315
//    dist[6] = qMax(dist[3], dist[7]); // south-east
316
//    dist[0] = qMax(dist[3], dist[1]); // south-west
317
//    dist[2] = qMax(dist[5], dist[1]); // north-west
318
//    dist[4] = 0; // center cell
319
//    /* the scheme of indices is as follows:  if sign(ix)= -1, if ix<0, 0 for ix=0, 1 for ix>0 (detto iy), then:
320
//       index = 4 + 3*sign(ix) + sign(iy) transforms combinations of directions to unique ids (0..8), which are used above.
321
//        e.g.: sign(ix) = -1, sign(iy) = 1 (=north-west) -> index = 4 + -3 + 1 = 2
322
//    */
323
//
324
//
325
//    int ringcount = int(floor(mHeight / cellsize)) + 1;
326
//    int ix, iy;
327
//    int ring;
328
//    float hdom;
329
//
330
//    for (ix=-ringcount;ix<=ringcount;ix++)
331
//        for (iy=-ringcount; iy<=+ringcount; iy++) {
332
//        ring = qMax(abs(ix), abs(iy));
333
//        QPoint pos(ix+p.x(), iy+p.y());
334
//        if (mHeightGrid->isIndexValid(pos)) {
335
//            float &rHGrid = mHeightGrid->valueAtIndex(pos).height;
336
//            if (rHGrid > mHeight) // skip calculation if grid is higher than tree
337
//                continue;
338
//            int direction = 4 + (ix?(ix<0?-3:3):0) + (iy?(iy<0?-1:1):0); // 4 + 3*sgn(x) + sgn(y)
339
//            hdom = mHeight - dist[direction];
340
//            if (ring>1)
341
//                hdom -= (ring-1)*10;
342
//
343
//            rHGrid = qMax(rHGrid, hdom); // write value
344
//        } // is valid
345
//    } // for (y)
39 Werner 346
}
40 Werner 347
 
407 werner 348
void Tree::heightGrid_torus()
349
{
350
    // height of Z*
155 werner 351
 
407 werner 352
    QPoint p = QPoint(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight); // pos of tree on height grid
353
    int bufferOffset = mHeightGrid->indexAt(QPointF(0.,0.)).x(); // offset of buffer (i.e.: size of buffer in height-pixels)
354
    p.setX((p.x()-bufferOffset)%10 + bufferOffset); // 10: 10 x 10m pixeln in 100m
355
    p.setY((p.y()-bufferOffset)%10 + bufferOffset);
155 werner 356
 
407 werner 357
 
358
    // torus coordinates: ru_offset = coords of lower left corner of 1ha patch
359
    QPoint ru_offset =QPoint(mPositionIndex.x()/cPxPerHeight - p.x(), mPositionIndex.y()/cPxPerHeight - p.y());
360
 
361
    // count trees that are on height-grid cells (used for stockable area)
362
    HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x(),10,bufferOffset,ru_offset.x()),
363
                                                   torusIndex(p.y(),10,bufferOffset,ru_offset.y()));
364
    v.increaseCount();
365
    v.height = qMax(v.height, mHeight);
366
 
367
 
368
    int r = mStamp->reader()->offset(); // distance between edge and the center pixel. e.g.: if r = 2 -> stamp=5x5
369
    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
370
    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
371
    if (index_eastwest - r < 0) { // east
372
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x()-1,10,bufferOffset,ru_offset.x()),
373
                                                       torusIndex(p.y(),10,bufferOffset,ru_offset.y()));
410 werner 374
        v.height = qMax(v.height, mHeight);
407 werner 375
    }
376
    if (index_eastwest + r >= cPxPerHeight) {  // west
377
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x()+1,10,bufferOffset,ru_offset.x()),
378
                                                       torusIndex(p.y(),10,bufferOffset,ru_offset.y()));
410 werner 379
        v.height = qMax(v.height, mHeight);
407 werner 380
    }
381
    if (index_northsouth - r < 0) {  // south
382
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x(),10,bufferOffset,ru_offset.x()),
383
                                                       torusIndex(p.y()-1,10,bufferOffset,ru_offset.y()));
410 werner 384
        v.height = qMax(v.height, mHeight);
407 werner 385
    }
386
    if (index_northsouth + r >= cPxPerHeight) {  // north
387
        HeightGridValue &v = mHeightGrid->valueAtIndex(torusIndex(p.x(),10,bufferOffset,ru_offset.x()),
388
                                                       torusIndex(p.y()+1,10,bufferOffset,ru_offset.y()));
410 werner 389
        v.height = qMax(v.height, mHeight);
407 werner 390
    }
391
 
392
 
393
 
394
 
395
//    int index_eastwest = mPositionIndex.x() % cPxPerHeight; // 4: very west, 0 east edge
396
//    int index_northsouth = mPositionIndex.y() % cPxPerHeight; // 4: northern edge, 0: southern edge
397
//    int dist[9];
398
//    dist[3] = index_northsouth * 2 + 1; // south
399
//    dist[1] = index_eastwest * 2 + 1; // west
400
//    dist[5] = 10 - dist[3]; // north
401
//    dist[7] = 10 - dist[1]; // east
402
//    dist[8] = qMax(dist[5], dist[7]); // north-east
403
//    dist[6] = qMax(dist[3], dist[7]); // south-east
404
//    dist[0] = qMax(dist[3], dist[1]); // south-west
405
//    dist[2] = qMax(dist[5], dist[1]); // north-west
406
//    dist[4] = 0; // center cell
407
//    /* the scheme of indices is as follows:  if sign(ix)= -1, if ix<0, 0 for ix=0, 1 for ix>0 (detto iy), then:
408
//       index = 4 + 3*sign(ix) + sign(iy) transforms combinations of directions to unique ids (0..8), which are used above.
409
//        e.g.: sign(ix) = -1, sign(iy) = 1 (=north-west) -> index = 4 + -3 + 1 = 2
410
//    */
411
//
412
//
413
//    int ringcount = int(floor(mHeight / cellsize)) + 1;
414
//    int ix, iy;
415
//    int ring;
416
//    float hdom;
417
//    for (ix=-ringcount;ix<=ringcount;ix++)
418
//        for (iy=-ringcount; iy<=+ringcount; iy++) {
419
//        ring = qMax(abs(ix), abs(iy));
420
//        QPoint pos(ix+p.x(), iy+p.y());
421
//        QPoint p_torus(torusIndex(pos.x(),10,bufferOffset,ru_offset.x()),
422
//                       torusIndex(pos.y(),10,bufferOffset,ru_offset.y()));
423
//        if (mHeightGrid->isIndexValid(p_torus)) {
424
//            float &rHGrid = mHeightGrid->valueAtIndex(p_torus.x(),p_torus.y()).height;
425
//            if (rHGrid > mHeight) // skip calculation if grid is higher than tree
426
//                continue;
427
//            int direction = 4 + (ix?(ix<0?-3:3):0) + (iy?(iy<0?-1:1):0); // 4 + 3*sgn(x) + sgn(y)
428
//            hdom = mHeight - dist[direction];
429
//            if (ring>1)
430
//                hdom -= (ring-1)*10;
431
//
432
//            rHGrid = qMax(rHGrid, hdom); // write value
433
//        } // is valid
434
//    } // for (y)
435
}
436
 
437
 
718 werner 438
/** reads the light influence field value for a tree.
439
    The LIF field is scanned within the crown area of the focal tree, and the influence of
440
    the focal tree is "subtracted" from the LIF values.
441
    Finally, the "LRI correction" is applied.
442
    see http://iland.boku.ac.at/competition+for+light for details.
443
  */
158 werner 444
void Tree::readLIF()
40 Werner 445
{
106 Werner 446
    if (!mStamp)
155 werner 447
        return;
448
    const Stamp *reader = mStamp->reader();
449
    if (!reader)
450
        return;
156 werner 451
    QPoint pos_reader = mPositionIndex;
780 werner 452
    const float outside_area_factor = 0.1f; //
155 werner 453
 
454
    int offset_reader = reader->offset();
455
    int offset_writer = mStamp->offset();
456
    int d_offset = offset_writer - offset_reader; // offset on the *stamp* to the crown-cells
457
 
458
    pos_reader-=QPoint(offset_reader, offset_reader);
40 Werner 459
 
155 werner 460
    float local_dom;
461
 
40 Werner 462
    int x,y;
463
    double sum=0.;
155 werner 464
    double value, own_value;
465
    float *grid_value;
403 werner 466
    float z, z_zstar;
155 werner 467
    int reader_size = reader->size();
468
    int rx = pos_reader.x();
469
    int ry = pos_reader.y();
470
    for (y=0;y<reader_size; ++y, ++ry) {
471
        grid_value = mGrid->ptr(rx, ry);
472
        for (x=0;x<reader_size;++x) {
473
 
718 werner 474
            const HeightGridValue &hgv = mHeightGrid->constValueAtIndex((rx+x)/cPxPerHeight, ry/cPxPerHeight); // the height grid value, ry: gets ++ed in outer loop, rx not
475
            local_dom = hgv.height;
884 werner 476
            z = std::max(mHeight - reader->distanceToCenter(x,y), 0.f); // distance to center = height (45 degree line)
403 werner 477
            z_zstar = (z>=local_dom)?1.f:z/local_dom;
155 werner 478
 
403 werner 479
            own_value = 1. - mStamp->offsetValue(x,y,d_offset)*mOpacity * z_zstar;
155 werner 480
            own_value = qMax(own_value, 0.02);
481
            value =  *grid_value++ / own_value; // remove impact of focal tree
720 werner 482
            // additional punishment if pixel is outside:
718 werner 483
            if (hgv.isForestOutside())
720 werner 484
               value *= outside_area_factor;
403 werner 485
 
486
            //qDebug() << x << y << local_dom << z << z_zstar << own_value << value << *(grid_value-1) << (*reader)(x,y) << mStamp->offsetValue(x,y,d_offset);
155 werner 487
            //if (value>0.)
488
            sum += value * (*reader)(x,y);
489
 
40 Werner 490
        }
491
    }
155 werner 492
    mLRI = sum;
426 werner 493
    // LRI correction...
494
    double hrel = mHeight / mHeightGrid->valueAtIndex(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight).height;
495
    if (hrel<1.)
496
        mLRI = species()->speciesSet()->LRIcorrection(mLRI, hrel);
497
 
403 werner 498
 
155 werner 499
    if (mLRI > 1.)
500
        mLRI = 1.;
206 werner 501
 
502
    // Finally, add LRI of this Tree to the ResourceUnit!
251 werner 503
    mRU->addWLA(mLeafArea, mLRI);
206 werner 504
 
155 werner 505
    //qDebug() << "Tree #"<< id() << "value" << sum << "Impact" << mImpact;
40 Werner 506
}
507
 
155 werner 508
/// Torus version of read stamp (glued edges)
158 werner 509
void Tree::readLIF_torus()
78 Werner 510
{
106 Werner 511
    if (!mStamp)
107 Werner 512
        return;
106 Werner 513
    const Stamp *reader = mStamp->reader();
78 Werner 514
    if (!reader)
107 Werner 515
        return;
295 werner 516
    int bufferOffset = mGrid->indexAt(QPointF(0.,0.)).x(); // offset of buffer
78 Werner 517
 
387 werner 518
    QPoint pos_reader = QPoint((mPositionIndex.x()-bufferOffset)%cPxPerRU + bufferOffset,
519
                               (mPositionIndex.y()-bufferOffset)%cPxPerRU + bufferOffset); // offset within the ha
295 werner 520
    QPoint ru_offset = QPoint(mPositionIndex.x() - pos_reader.x(), mPositionIndex.y() - pos_reader.y()); // offset of the corner of the resource index
521
 
78 Werner 522
    int offset_reader = reader->offset();
106 Werner 523
    int offset_writer = mStamp->offset();
78 Werner 524
    int d_offset = offset_writer - offset_reader; // offset on the *stamp* to the crown-cells
525
 
526
    pos_reader-=QPoint(offset_reader, offset_reader);
527
 
528
    float local_dom;
529
 
530
    int x,y;
531
    double sum=0.;
532
    double value, own_value;
533
    float *grid_value;
407 werner 534
    float z, z_zstar;
78 Werner 535
    int reader_size = reader->size();
536
    int rx = pos_reader.x();
537
    int ry = pos_reader.y();
155 werner 538
    int xt, yt; // wrapped coords
539
 
397 werner 540
    for (y=0;y<reader_size; ++y) {
541
        yt = torusIndex(ry+y,cPxPerRU, bufferOffset, ru_offset.y());
78 Werner 542
        for (x=0;x<reader_size;++x) {
387 werner 543
            xt = torusIndex(rx+x,cPxPerRU, bufferOffset, ru_offset.x());
155 werner 544
            grid_value = mGrid->ptr(xt,yt);
407 werner 545
 
387 werner 546
            local_dom = mHeightGrid->valueAtIndex(xt/cPxPerHeight, yt/cPxPerHeight).height; // ry: gets ++ed in outer loop, rx not
884 werner 547
            z = std::max(mHeight - reader->distanceToCenter(x,y), 0.f); // distance to center = height (45 degree line)
407 werner 548
            z_zstar = (z>=local_dom)?1.f:z/local_dom;
125 Werner 549
 
407 werner 550
            own_value = 1. - mStamp->offsetValue(x,y,d_offset)*mOpacity * z_zstar;
551
            // old: own_value = 1. - mStamp->offsetValue(x,y,d_offset)*mOpacity / local_dom; // old: dom_height;
78 Werner 552
            own_value = qMax(own_value, 0.02);
407 werner 553
            value =  *grid_value++ / own_value; // remove impact of focal tree
554
 
397 werner 555
            // debug for one tree in HJA
556
            //if (id()==178020)
557
            //    qDebug() << x << y << xt << yt << *grid_value << local_dom << own_value << value << (*reader)(x,y);
321 werner 558
            //if (_isnan(value))
559
            //    qDebug() << "isnan" << id();
397 werner 560
            if (value * (*reader)(x,y)>1.)
561
                qDebug() << "LIFTorus: value>1.";
78 Werner 562
            sum += value * (*reader)(x,y);
563
 
564
            //} // isIndexValid
565
        }
566
    }
106 Werner 567
    mLRI = sum;
426 werner 568
 
569
    // LRI correction...
570
    double hrel = mHeight / mHeightGrid->valueAtIndex(mPositionIndex.x()/cPxPerHeight, mPositionIndex.y()/cPxPerHeight).height;
571
    if (hrel<1.)
572
        mLRI = species()->speciesSet()->LRIcorrection(mLRI, hrel);
573
 
574
 
615 werner 575
    if (isnan(mLRI)) {
321 werner 576
        qDebug() << "LRI invalid (nan)!" << id();
577
        mLRI=0.;
578
        //qDebug() << reader->dump();
579
    }
148 iland 580
    if (mLRI > 1.)
581
        mLRI = 1.;
78 Werner 582
    //qDebug() << "Tree #"<< id() << "value" << sum << "Impact" << mImpact;
205 werner 583
 
584
    // Finally, add LRI of this Tree to the ResourceUnit!
251 werner 585
    mRU->addWLA(mLeafArea, mLRI);
58 Werner 586
}
587
 
155 werner 588
 
40 Werner 589
void Tree::resetStatistics()
590
{
591
    m_statPrint=0;
105 Werner 592
    m_statCreated=0;
48 Werner 593
    m_statAboveZ=0;
40 Werner 594
    m_nextId=1;
595
}
107 Werner 596
 
1071 werner 597
void Tree::mortalityParams(double dbh_inc_threshold, int stress_years, double stress_mort_prob)
598
{
599
    _stress_threshold = dbh_inc_threshold;
600
    _stress_years = stress_years;
601
    _stress_death_prob = stress_mort_prob;
602
    qDebug() << "Alternative Mortality enabled: threshold" << dbh_inc_threshold << ", years:" << _stress_years << ", level:" << _stress_death_prob;
603
}
604
 
251 werner 605
void Tree::calcLightResponse()
606
{
607
    // calculate a light response from lri:
298 werner 608
    // http://iland.boku.ac.at/individual+tree+light+availability
470 werner 609
    double lri = limit(mLRI * mRU->LRImodifier(), 0., 1.); // Eq. (3)
610
    mLightResponse = mSpecies->lightResponse(lri); // Eq. (4)
251 werner 611
    mRU->addLR(mLeafArea, mLightResponse);
612
 
613
}
614
 
110 Werner 615
//////////////////////////////////////////////////
616
////  Growth Functions
617
//////////////////////////////////////////////////
107 Werner 618
 
227 werner 619
/** grow() is the main function of the yearly tree growth.
620
  The main steps are:
298 werner 621
  - Production of GPP/NPP   @sa http://iland.boku.ac.at/primary+production http://iland.boku.ac.at/individual+tree+light+availability
622
  - Partitioning of NPP to biomass compartments of the tree @sa http://iland.boku.ac.at/allocation
227 werner 623
  - Growth of the stem http://iland.boku.ac.at/stem+growth (???)
387 werner 624
  Further activties: * the age of the tree is increased
625
                     * the mortality sub routine is executed
626
                     * seeds are produced */
107 Werner 627
void Tree::grow()
628
{
159 werner 629
    TreeGrowthData d;
169 werner 630
    mAge++; // increase age
230 werner 631
    // step 1: get "interception area" of the tree individual [m2]
632
    // the sum of all area of all trees of a unit equal the total stocked area * interception_factor(Beer-Lambert)
633
    double effective_area = mRU->interceptedArea(mLeafArea, mLightResponse);
107 Werner 634
 
230 werner 635
    // step 2: calculate GPP of the tree based
636
    // (1) get the amount of GPP for a "unit area" of the tree species
637
    double raw_gpp_per_area = mRU->resourceUnitSpecies(species()).prod3PG().GPPperArea();
638
    // (2) GPP (without aging-effect) in kg Biomass / year
639
    double raw_gpp = raw_gpp_per_area * effective_area;
161 werner 640
 
227 werner 641
    // apply aging according to the state of the individuum
388 werner 642
    const double aging_factor = mSpecies->aging(mHeight, mAge);
376 werner 643
    mRU->addTreeAging(mLeafArea, aging_factor);
227 werner 644
    double gpp = raw_gpp * aging_factor; //
608 werner 645
    d.NPP = gpp * cAutotrophicRespiration; // respiration loss (0.47), cf. Waring et al 1998.
113 Werner 646
 
279 werner 647
    //DBGMODE(
137 Werner 648
        if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dTreeNPP) && isDebugging()) {
133 Werner 649
            DebugList &out = GlobalSettings::instance()->debugList(mId, GlobalSettings::dTreeNPP);
650
            dumpList(out); // add tree headers
299 werner 651
            out << mLRI * mRU->LRImodifier() << mLightResponse << effective_area << raw_gpp << gpp << d.NPP << aging_factor;
133 Werner 652
        }
279 werner 653
    //); // DBGMODE()
217 werner 654
    if (d.NPP>0.)
655
        partitioning(d); // split npp to compartments and grow (diameter, height)
133 Werner 656
 
387 werner 657
    // mortality
1071 werner 658
#ifdef ALT_TREE_MORTALITY
659
    // alternative variant of tree mortality (note: mStrssIndex used otherwise)
660
    altMortality(d);
661
 
662
#else
200 werner 663
    if (Model::settings().mortalityEnabled)
664
        mortality(d);
110 Werner 665
 
159 werner 666
    mStressIndex = d.stress_index;
1071 werner 667
#endif
180 werner 668
 
669
    if (!isDead())
257 werner 670
        mRU->resourceUnitSpecies(species()).statistics().add(this, &d);
277 werner 671
 
387 werner 672
    // regeneration
460 werner 673
    mSpecies->seedProduction(mAge, mHeight, mPositionIndex);
387 werner 674
 
107 Werner 675
}
676
 
227 werner 677
/** partitioning of this years assimilates (NPP) to biomass compartments.
298 werner 678
  Conceptionally, the algorithm is based on Duursma, 2007.
679
  @sa http://iland.boku.ac.at/allocation */
159 werner 680
inline void Tree::partitioning(TreeGrowthData &d)
115 Werner 681
{
159 werner 682
    double npp = d.NPP;
115 Werner 683
    // add content of reserve pool
116 Werner 684
    npp += mNPPReserve;
159 werner 685
    const double foliage_mass_allo = species()->biomassFoliage(mDbh);
276 werner 686
    const double reserve_size = foliage_mass_allo * (1. + mSpecies->finerootFoliageRatio());
297 werner 687
    double refill_reserve = qMin(reserve_size, (1. + mSpecies->finerootFoliageRatio())*mFoliageMass); // not always try to refill reserve 100%
119 Werner 688
 
136 Werner 689
    double apct_wood, apct_root, apct_foliage; // allocation percentages (sum=1) (eta)
468 werner 690
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
117 Werner 691
    // turnover rates
159 werner 692
    const double &to_fol = species()->turnoverLeaf();
693
    const double &to_root = species()->turnoverRoot();
136 Werner 694
    // the turnover rate of wood depends on the size of the reserve pool:
116 Werner 695
 
136 Werner 696
 
163 werner 697
    double to_wood = refill_reserve / (mWoodyMass + refill_reserve);
698
 
468 werner 699
    apct_root = rus.prod3PG().rootFraction();
261 werner 700
    d.NPP_above = d.NPP * (1. - apct_root); // aboveground: total NPP - fraction to roots
298 werner 701
    double b_wf = species()->allometricRatio_wf(); // ratio of allometric exponents (b_woody / b_foliage)
117 Werner 702
 
703
    // Duursma 2007, Eq. (20)
167 werner 704
    apct_wood = (foliage_mass_allo*to_wood/npp + b_wf*(1.-apct_root) - b_wf*foliage_mass_allo*to_fol/npp) / ( foliage_mass_allo/mWoodyMass + b_wf );
902 werner 705
 
706
    apct_wood = limit(apct_wood, 0., 1.-apct_root);
707
 
117 Werner 708
    apct_foliage = 1. - apct_root - apct_wood;
709
 
163 werner 710
 
902 werner 711
    DBGMODE(
163 werner 712
            if (apct_foliage<0 || apct_wood<0)
713
                qDebug() << "transfer to foliage or wood < 0";
714
             if (npp<0)
715
                 qDebug() << "NPP < 0";
902 werner 716
            );
163 werner 717
 
136 Werner 718
    // Change of biomass compartments
276 werner 719
    double sen_root = mFineRootMass * to_root;
720
    double sen_foliage = mFoliageMass * to_fol;
521 werner 721
    if (ru()->snag())
588 werner 722
        ru()->snag()->addTurnoverLitter(this->species(), sen_foliage, sen_root);
298 werner 723
 
136 Werner 724
    // Roots
298 werner 725
    // http://iland.boku.ac.at/allocation#belowground_NPP
276 werner 726
    mFineRootMass -= sen_root; // reduce only fine root pool
727
    double delta_root = apct_root * npp;
728
    // 1st, refill the fine root pool
729
    double fineroot_miss = mFoliageMass * mSpecies->finerootFoliageRatio() - mFineRootMass;
730
    if (fineroot_miss>0.){
731
        double delta_fineroot = qMin(fineroot_miss, delta_root);
732
        mFineRootMass += delta_fineroot;
733
        delta_root -= delta_fineroot;
734
    }
735
    // 2nd, the rest of NPP allocated to roots go to coarse roots
595 werner 736
    double max_coarse_root = species()->biomassRoot(mDbh);
276 werner 737
    mCoarseRootMass += delta_root;
595 werner 738
    if (mCoarseRootMass > max_coarse_root) {
739
        // if the coarse root pool exceeds the value given by the allometry, then the
740
        // surplus is accounted as turnover
741
        if (ru()->snag())
742
            ru()->snag()->addTurnoverWood(species(), mCoarseRootMass-max_coarse_root);
119 Werner 743
 
595 werner 744
        mCoarseRootMass = max_coarse_root;
745
    }
746
 
136 Werner 747
    // Foliage
159 werner 748
    double delta_foliage = apct_foliage * npp - sen_foliage;
137 Werner 749
    mFoliageMass += delta_foliage;
615 werner 750
    if (isnan(mFoliageMass))
217 werner 751
        qDebug() << "foliage mass invalid!";
163 werner 752
    if (mFoliageMass<0.) mFoliageMass=0.; // limit to zero
753
 
159 werner 754
    mLeafArea = mFoliageMass * species()->specificLeafArea(); // update leaf area
119 Werner 755
 
271 werner 756
    // stress index: different varaints at denominator: to_fol*foliage_mass = leafmass to rebuild,
198 werner 757
    // foliage_mass_allo: simply higher chance for stress
271 werner 758
    // note: npp = NPP + reserve (see above)
276 werner 759
    d.stress_index =qMax(1. - (npp) / ( to_fol*foliage_mass_allo + to_root*foliage_mass_allo*species()->finerootFoliageRatio() + reserve_size), 0.);
198 werner 760
 
136 Werner 761
    // Woody compartments
298 werner 762
    // see also: http://iland.boku.ac.at/allocation#reserve_and_allocation_to_stem_growth
136 Werner 763
    // (1) transfer to reserve pool
764
    double gross_woody = apct_wood * npp;
765
    double to_reserve = qMin(reserve_size, gross_woody);
766
    mNPPReserve = to_reserve;
767
    double net_woody = gross_woody - to_reserve;
137 Werner 768
    double net_stem = 0.;
164 werner 769
    mDbhDelta = 0.;
165 werner 770
 
771
 
136 Werner 772
    if (net_woody > 0.) {
773
        // (2) calculate part of increment that is dedicated to the stem (which is a function of diameter)
159 werner 774
        net_stem = net_woody * species()->allometricFractionStem(mDbh);
775
        d.NPP_stem = net_stem;
137 Werner 776
        mWoodyMass += net_woody;
136 Werner 777
        //  (3) growth of diameter and height baseed on net stem increment
159 werner 778
        grow_diameter(d);
136 Werner 779
    }
119 Werner 780
 
279 werner 781
    //DBGMODE(
137 Werner 782
     if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dTreePartition)
783
         && isDebugging() ) {
129 Werner 784
            DebugList &out = GlobalSettings::instance()->debugList(mId, GlobalSettings::dTreePartition);
785
            dumpList(out); // add tree headers
136 Werner 786
            out << npp << apct_foliage << apct_wood << apct_root
276 werner 787
                    << delta_foliage << net_woody << delta_root << mNPPReserve << net_stem << d.stress_index;
137 Werner 788
     }
144 Werner 789
 
279 werner 790
    //); // DBGMODE()
497 werner 791
    DBGMODE(
428 werner 792
      if (mWoodyMass<0. || mWoodyMass>50000 || mFoliageMass<0. || mFoliageMass>2000. || mCoarseRootMass<0. || mCoarseRootMass>30000
393 werner 793
         || mNPPReserve>4000.) {
389 werner 794
         qDebug() << "Tree:partitioning: invalid or unlikely pools.";
144 Werner 795
         qDebug() << GlobalSettings::instance()->debugListCaptions(GlobalSettings::DebugOutputs(0));
796
         DebugList dbg; dumpList(dbg);
797
         qDebug() << dbg;
497 werner 798
     } );
144 Werner 799
 
136 Werner 800
    /*DBG_IF_X(mId == 1 , "Tree::partitioning", "dump", dump()
801
             + QString("npp %1 npp_reserve %9 sen_fol %2 sen_stem %3 sen_root %4 net_fol %5 net_stem %6 net_root %7 to_reserve %8")
802
               .arg(npp).arg(senescence_foliage).arg(senescence_stem).arg(senescence_root)
803
               .arg(net_foliage).arg(net_stem).arg(net_root).arg(to_reserve).arg(mNPPReserve) );*/
129 Werner 804
 
115 Werner 805
}
806
 
125 Werner 807
 
134 Werner 808
/** Determination of diamter and height growth based on increment of the stem mass (@p net_stem_npp).
125 Werner 809
    Refer to XXX for equations and variables.
810
    This function updates the dbh and height of the tree.
227 werner 811
    The equations are based on dbh in meters! */
159 werner 812
inline void Tree::grow_diameter(TreeGrowthData &d)
119 Werner 813
{
814
    // determine dh-ratio of increment
815
    // height increment is a function of light competition:
125 Werner 816
    double hd_growth = relative_height_growth(); // hd of height growth
153 werner 817
    double d_m = mDbh / 100.; // current diameter in [m]
159 werner 818
    double net_stem_npp = d.NPP_stem;
819
 
153 werner 820
    const double d_delta_m = mDbhDelta / 100.; // increment of last year in [m]
115 Werner 821
 
159 werner 822
    const double mass_factor = species()->volumeFactor() * species()->density();
153 werner 823
    double stem_mass = mass_factor * d_m*d_m * mHeight; // result: kg, dbh[cm], h[meter]
123 Werner 824
 
153 werner 825
    // factor is in diameter increment per NPP [m/kg]
826
    double factor_diameter = 1. / (  mass_factor * (d_m + d_delta_m)*(d_m + d_delta_m) * ( 2. * mHeight/d_m + hd_growth) );
125 Werner 827
    double delta_d_estimate = factor_diameter * net_stem_npp; // estimated dbh-inc using last years increment
828
 
829
    // using that dbh-increment we estimate a stem-mass-increment and the residual (Eq. 9)
153 werner 830
    double stem_estimate = mass_factor * (d_m + delta_d_estimate)*(d_m + delta_d_estimate)*(mHeight + delta_d_estimate*hd_growth);
137 Werner 831
    double stem_residual = stem_estimate - (stem_mass + net_stem_npp);
125 Werner 832
 
833
    // the final increment is then:
834
    double d_increment = factor_diameter * (net_stem_npp - stem_residual); // Eq. (11)
463 werner 835
    double res_final  = 0.;
836
    if (fabs(stem_residual) > 1.) {
465 werner 837
 
463 werner 838
        // calculate final residual in stem
839
        res_final = mass_factor * (d_m + d_increment)*(d_m + d_increment)*(mHeight + d_increment*hd_growth)-((stem_mass + net_stem_npp));
840
        if (fabs(res_final)>1.) {
465 werner 841
            // for large errors in stem biomass due to errors in diameter increment (> 1kg), we solve the increment iteratively.
463 werner 842
            // first, increase increment with constant step until we overestimate the first time
843
            // then,
844
            d_increment = 0.02; // start with 2cm increment
845
            bool reached_error = false;
846
            double step=0.01; // step-width 1cm
847
            double est_stem;
848
            do {
849
                est_stem = mass_factor * (d_m + d_increment)*(d_m + d_increment)*(mHeight + d_increment*hd_growth); // estimate with current increment
850
                stem_residual = est_stem - (stem_mass + net_stem_npp);
851
 
852
                if (fabs(stem_residual) <1.) // finished, if stem residual below 1kg
853
                    break;
854
                if (stem_residual > 0.) {
855
                    d_increment -= step;
856
                    reached_error=true;
857
                } else {
858
                    d_increment += step;
859
                }
860
                if (reached_error)
861
                    step /= 2.;
862
            } while (step>0.00001); // continue until diameter "accuracy" falls below 1/100mm
863
        }
864
    }
865
 
866
    if (d_increment<0.f)
867
        qDebug() << "Tree::grow_diameter: d_inc < 0.";
144 Werner 868
    DBG_IF_X(d_increment<0. || d_increment>0.1, "Tree::grow_dimater", "increment out of range.", dump()
125 Werner 869
             + QString("\nhdz %1 factor_diameter %2 stem_residual %3 delta_d_estimate %4 d_increment %5 final residual(kg) %6")
870
               .arg(hd_growth).arg(factor_diameter).arg(stem_residual).arg(delta_d_estimate).arg(d_increment)
142 Werner 871
               .arg( mass_factor * (mDbh + d_increment)*(mDbh + d_increment)*(mHeight + d_increment*hd_growth)-((stem_mass + net_stem_npp)) ));
125 Werner 872
 
303 werner 873
    //DBGMODE(
463 werner 874
        // do not calculate res_final twice if already done
875
        DBG_IF_X( (res_final==0.?fabs(mass_factor * (d_m + d_increment)*(d_m + d_increment)*(mHeight + d_increment*hd_growth)-((stem_mass + net_stem_npp))):res_final) > 1, "Tree::grow_diameter", "final residual stem estimate > 1kg", dump());
153 werner 876
        DBG_IF_X(d_increment > 10. || d_increment*hd_growth >10., "Tree::grow_diameter", "growth out of bound:",QString("d-increment %1 h-increment %2 ").arg(d_increment).arg(d_increment*hd_growth/100.) + dump());
158 werner 877
 
137 Werner 878
        if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dTreeGrowth) && isDebugging() ) {
126 Werner 879
            DebugList &out = GlobalSettings::instance()->debugList(mId, GlobalSettings::dTreeGrowth);
129 Werner 880
            dumpList(out); // add tree headers
143 Werner 881
            out << net_stem_npp << stem_mass << hd_growth << factor_diameter << delta_d_estimate*100 << d_increment*100;
126 Werner 882
        }
153 werner 883
 
303 werner 884
    //); // DBGMODE()
125 Werner 885
 
886
    d_increment = qMax(d_increment, 0.);
887
 
888
    // update state variables
153 werner 889
    mDbh += d_increment*100; // convert from [m] to [cm]
890
    mDbhDelta = d_increment*100; // save for next year's growth
891
    mHeight += d_increment * hd_growth;
158 werner 892
 
893
    // update state of LIP stamp and opacity
159 werner 894
    mStamp = species()->stamp(mDbh, mHeight); // get new stamp for updated dimensions
158 werner 895
    // calculate the CrownFactor which reflects the opacity of the crown
200 werner 896
    const double k=Model::settings().lightExtinctionCoefficientOpacity;
897
    mOpacity = 1. - exp(-k * mLeafArea / mStamp->crownArea());
158 werner 898
 
119 Werner 899
}
900
 
125 Werner 901
 
902
/// return the HD ratio of this year's increment based on the light status.
119 Werner 903
inline double Tree::relative_height_growth()
904
{
905
    double hd_low, hd_high;
906
    mSpecies->hdRange(mDbh, hd_low, hd_high);
907
 
125 Werner 908
    DBG_IF_X(hd_low>hd_high, "Tree::relative_height_growth", "hd low higher dann hd_high for ", dump());
949 werner 909
    DBG_IF_X(hd_low < 10 || hd_high>250, "Tree::relative_height_growth", "hd out of range ", dump() + QString(" hd-low: %1 hd-high: %2").arg(hd_low).arg(hd_high));
125 Werner 910
 
911
    // scale according to LRI: if receiving much light (LRI=1), the result is hd_low (for open grown trees)
326 werner 912
    // use the corrected LRI (see tracker#11)
913
    double lri = limit(mLRI * mRU->LRImodifier(),0.,1.);
914
    double hd_ratio = hd_high - (hd_high-hd_low)*lri;
125 Werner 915
    return hd_ratio;
119 Werner 916
}
141 Werner 917
 
278 werner 918
/** This function is called if a tree dies.
919
  @sa ResourceUnit::cleanTreeList(), remove() */
277 werner 920
void Tree::die(TreeGrowthData *d)
921
{
922
    setFlag(Tree::TreeDead, true); // set flag that tree is dead
664 werner 923
    mRU->treeDied();
468 werner 924
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
925
    rus.statisticsDead().add(this, d); // add tree to statistics
1064 werner 926
    notifyTreeRemoved(TreeDeath);
521 werner 927
    if (ru()->snag())
928
        ru()->snag()->addMortality(this);
277 werner 929
}
930
 
903 werner 931
/// remove a tree (most likely due to harvest) from the system.
564 werner 932
void Tree::remove(double removeFoliage, double removeBranch, double removeStem )
278 werner 933
{
934
    setFlag(Tree::TreeDead, true); // set flag that tree is dead
1050 werner 935
    setIsHarvested();
664 werner 936
    mRU->treeDied();
468 werner 937
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
938
    rus.statisticsMgmt().add(this, 0);
1064 werner 939
    notifyTreeRemoved(TreeHarvest);
903 werner 940
 
521 werner 941
    if (ru()->snag())
564 werner 942
        ru()->snag()->addHarvest(this, removeStem, removeBranch, removeFoliage);
278 werner 943
}
944
 
713 werner 945
/// remove the tree due to an special event (disturbance)
903 werner 946
/// this is +- the same as die().
713 werner 947
void Tree::removeDisturbance(const double stem_to_soil_fraction, const double stem_to_snag_fraction, const double branch_to_soil_fraction, const double branch_to_snag_fraction, const double foliage_to_soil_fraction)
948
{
949
    setFlag(Tree::TreeDead, true); // set flag that tree is dead
950
    mRU->treeDied();
951
    ResourceUnitSpecies &rus = mRU->resourceUnitSpecies(species());
714 werner 952
    rus.statisticsDead().add(this, 0);
1064 werner 953
    notifyTreeRemoved(TreeDisturbance);
903 werner 954
 
713 werner 955
    if (ru()->snag())
956
        ru()->snag()->addDisturbance(this, stem_to_snag_fraction, stem_to_soil_fraction, branch_to_snag_fraction, branch_to_soil_fraction, foliage_to_soil_fraction);
957
}
958
 
903 werner 959
/// remove a part of the biomass of the tree, e.g. due to fire.
960
void Tree::removeBiomassOfTree(const double removeFoliageFraction, const double removeBranchFraction, const double removeStemFraction)
668 werner 961
{
962
    mFoliageMass *= 1. - removeFoliageFraction;
963
    mWoodyMass *= (1. - removeStemFraction);
964
    // we have a problem with the branches: this currently cannot be done properly!
766 werner 965
    (void) removeBranchFraction; // silence warning
668 werner 966
}
967
 
975 werner 968
void Tree::setHeight(const float height)
969
{
970
    if (height<=0. || height>150.)
971
        qWarning() << "trying to set tree height to invalid value:" << height << " for tree on RU:" << (mRU?mRU->boundingBox():QRect());
972
    mHeight=height;
973
}
974
 
159 werner 975
void Tree::mortality(TreeGrowthData &d)
976
{
163 werner 977
    // death if leaf area is 0
978
    if (mFoliageMass<0.00001)
979
        die();
980
 
308 werner 981
    double p_death,  p_stress, p_intrinsic;
982
    p_intrinsic = species()->deathProb_intrinsic();
983
    p_stress = species()->deathProb_stress(d.stress_index);
984
    p_death =  p_intrinsic + p_stress;
707 werner 985
    double p = drandom(); //0..1
159 werner 986
    if (p<p_death) {
987
        // die...
988
        die();
989
    }
990
}
141 Werner 991
 
1071 werner 992
 
993
void Tree::altMortality(TreeGrowthData &d)
994
{
995
    // death if leaf area is 0
996
    if (mFoliageMass<0.00001)
997
        die();
998
 
999
    double  p_intrinsic, p_stress=0.;
1000
    p_intrinsic = species()->deathProb_intrinsic();
1001
 
1002
    if (mDbhDelta < _stress_threshold) {
1003
        mStressIndex++;
1004
        if (mStressIndex> _stress_years)
1005
            p_stress = _stress_death_prob;
1006
    } else
1007
        mStressIndex = 0;
1008
 
1009
    double p = drandom(); //0..1
1010
    if (p<p_intrinsic + p_stress) {
1011
        // die...
1012
        die();
1013
    }
1014
 
1015
 
1016
}
1017
 
1064 werner 1018
void Tree::notifyTreeRemoved(TreeRemovalType reason)
903 werner 1019
{
1020
    // add the volume of the current tree to the height grid
904 werner 1021
    // this information is used to track the removed volume for stands based on grids.
909 werner 1022
    ABE::ForestManagementEngine *abe = GlobalSettings::instance()->model()->ABEngine();
1023
    if (abe)
1064 werner 1024
        abe->notifyTreeRemoval(this, (int)reason);
1044 werner 1025
 
1026
    // tell disturbance modules that a tree died
1027
    GlobalSettings::instance()->model()->modules()->treeDeath(this, (int) reason);
903 werner 1028
}
1029
 
141 Werner 1030
//////////////////////////////////////////////////
1031
////  value functions
1032
//////////////////////////////////////////////////
1033
 
145 Werner 1034
double Tree::volume() const
141 Werner 1035
{
1036
    /// @see Species::volumeFactor() for details
159 werner 1037
    const double volume_factor = species()->volumeFactor();
157 werner 1038
    const double volume =  volume_factor * mDbh*mDbh*mHeight * 0.0001; // dbh in cm: cm/100 * cm/100 = cm*cm * 0.0001 = m2
141 Werner 1039
    return volume;
1040
}
180 werner 1041
 
579 werner 1042
/// return the basal area in m2
180 werner 1043
double Tree::basalArea() const
1044
{
1045
    // A = r^2 * pi = d/2*pi; from cm->m: d/200
1046
    const double b = (mDbh/200.)*(mDbh/200.)*M_PI;
1047
    return b;
1048
}
668 werner 1049