Subversion Repositories public iLand

Rev

Rev 1157 | Rev 1164 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1
 
671 werner 2
/********************************************************************************************
3
**    iLand - an individual based forest landscape and disturbance model
4
**    http://iland.boku.ac.at
5
**    Copyright (C) 2009-  Werner Rammer, Rupert Seidl
6
**
7
**    This program is free software: you can redistribute it and/or modify
8
**    it under the terms of the GNU General Public License as published by
9
**    the Free Software Foundation, either version 3 of the License, or
10
**    (at your option) any later version.
11
**
12
**    This program is distributed in the hope that it will be useful,
13
**    but WITHOUT ANY WARRANTY; without even the implied warranty of
14
**    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
**    GNU General Public License for more details.
16
**
17
**    You should have received a copy of the GNU General Public License
18
**    along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
********************************************************************************************/
20
 
91 Werner 21
#include <QtCore>
22
#include <QtSql>
23
#include "global.h"
393 werner 24
#include "globalsettings.h"
102 Werner 25
#include "xmlhelper.h"
90 Werner 26
#include "speciesset.h"
91 Werner 27
#include "species.h"
387 werner 28
#include "model.h"
29
#include "seeddispersal.h"
393 werner 30
#include "modelsettings.h"
1001 werner 31
#include "debugtimer.h"
90 Werner 32
 
697 werner 33
/** @class SpeciesSet
34
    A SpeciesSet acts as a container for individual Species objects. In iLand, theoretically,
35
    multiple species sets can be used in parallel.
36
  */
37
 
90 Werner 38
SpeciesSet::SpeciesSet()
39
{
91 Werner 40
    mSetupQuery = 0;
90 Werner 41
}
91 Werner 42
 
43
SpeciesSet::~SpeciesSet()
44
{
45
   clear();
46
}
47
 
48
void SpeciesSet::clear()
49
{
50
    qDeleteAll(mSpecies.values());
387 werner 51
    qDeleteAll(mSeedDispersal);
91 Werner 52
    mSpecies.clear();
179 werner 53
    mActiveSpecies.clear();
91 Werner 54
}
55
 
111 Werner 56
const Species *SpeciesSet::species(const int &index)
57
{
58
    foreach(Species *s, mSpecies)
59
        if (s->index() == index)
60
            return s;
61
    return NULL;
62
}
91 Werner 63
 
64
/** loads active species from a database table and creates/setups the species.
65
    The function uses the global database-connection.
66
  */
102 Werner 67
int SpeciesSet::setup()
91 Werner 68
{
102 Werner 69
    const XmlHelper &xml = GlobalSettings::instance()->settings();
191 werner 70
    QString tableName = xml.value("model.species.source", "species");
318 werner 71
    mName = tableName;
191 werner 72
    QString readerFile = xml.value("model.species.reader", "reader.bin");
102 Werner 73
    readerFile = GlobalSettings::instance()->path(readerFile, "lip");
74
    mReaderStamp.load(readerFile);
802 werner 75
    if (GlobalSettings::instance()->settings().paramValueBool("debugDumpStamps", false) )
76
        qDebug() << mReaderStamp.dump();
102 Werner 77
 
802 werner 78
 
91 Werner 79
    QSqlQuery query(GlobalSettings::instance()->dbin());
80
    mSetupQuery = &query;
81
    QString sql = QString("select * from %1").arg(tableName);
82
    query.exec(sql);
270 werner 83
    if (query.lastError().isValid()){
84
        throw IException(QString("Error loading species set: %1 \n %2").arg(sql, query.lastError().text()) );
85
    }
86
 
91 Werner 87
    clear();
88
    qDebug() << "attempting to load a species set from" << tableName;
89
    while (query.next()) {
90
        if (var("active").toInt()==0)
91
            continue;
92
 
93
        Species *s = new Species(this); // create
99 Werner 94
        // call setup routine (which calls SpeciesSet::var() to retrieve values
91 Werner 95
        s->setup();
96
 
97
        mSpecies.insert(s->id(), s); // store
179 werner 98
        if (s->active())
99
            mActiveSpecies.append(s);
577 werner 100
 
101
        Expression::addConstant(s->id(), s->index());
91 Werner 102
    } // while query.next()
103
    qDebug() << "loaded" << mSpecies.count() << "active species:";
575 werner 104
    qDebug() << "index, id, name";
105
    foreach(const Species *s, mActiveSpecies)
106
        qDebug() << s->index() << s->id() << s->name();
91 Werner 107
 
108
    mSetupQuery = 0;
209 werner 109
 
110
    // setup nitrogen response
111
    XmlHelper resp(xml.node("model.species.nitrogenResponseClasses"));
112
    if (!resp.isValid())
113
        throw IException("model.species.nitrogenResponseClasses not present!");
114
    mNitrogen_1a = resp.valueDouble("class_1_a");
115
    mNitrogen_1b = resp.valueDouble("class_1_b");
116
    mNitrogen_2a = resp.valueDouble("class_2_a");
117
    mNitrogen_2b = resp.valueDouble("class_2_b");
118
    mNitrogen_3a = resp.valueDouble("class_3_a");
119
    mNitrogen_3b = resp.valueDouble("class_3_b");
120
    if (mNitrogen_1a*mNitrogen_1b*mNitrogen_2a*mNitrogen_2b*mNitrogen_3a*mNitrogen_3b == 0)
121
        throw IException("at least one parameter of model.species.nitrogenResponseClasses is not valid (value=0)!");
122
 
123
    // setup CO2 response
124
    XmlHelper co2(xml.node("model.species.CO2Response"));
125
    mCO2base = co2.valueDouble("baseConcentration");
126
    mCO2comp = co2.valueDouble("compensationPoint");
127
    mCO2beta0 = co2.valueDouble("beta0");
128
    mCO2p0 = co2.valueDouble("p0");
129
    if (mCO2base*mCO2comp*(mCO2base-mCO2comp)*mCO2beta0*mCO2p0==0)
130
        throw IException("at least one parameter of model.species.CO2Response is not valid!");
131
 
274 werner 132
    // setup Light responses
133
    XmlHelper light(xml.node("model.species.lightResponse"));
134
    mLightResponseTolerant.setAndParse(light.value("shadeTolerant"));
135
    mLightResponseIntolerant.setAndParse(light.value("shadeIntolerant"));
428 werner 136
    mLightResponseTolerant.linearize(0., 1.);
137
    mLightResponseIntolerant.linearize(0., 1.);
274 werner 138
    if (mLightResponseTolerant.expression().isEmpty() || mLightResponseIntolerant.expression().isEmpty())
139
        throw IException("at least one parameter of model.species.lightResponse is empty!");
425 werner 140
    // lri-correction
141
    mLRICorrection.setAndParse(light.value("LRImodifier","1"));
428 werner 142
    // x: LRI, y: relative heigth
143
    mLRICorrection.linearize2d(0., 1., 0., 1.);
391 werner 144
    return mSpecies.count();
387 werner 145
 
391 werner 146
}
147
 
148
void SpeciesSet::setupRegeneration()
149
{
764 werner 150
    SeedDispersal::setupExternalSeeds();
391 werner 151
    foreach(Species *s, mActiveSpecies) {
152
        SeedDispersal *sd = new SeedDispersal(s);
153
        sd->setup(); // setup memory for the seed map (grid)
154
        s->setSeedDispersal(sd); // establish the link between species and the map
387 werner 155
    }
764 werner 156
    SeedDispersal::finalizeExternalSeeds();
391 werner 157
    qDebug() << "Setup of seed dispersal maps finished.";
158
}
91 Werner 159
 
1157 werner 160
void nc_seed_distribution(Species *species)
475 werner 161
{
479 werner 162
    species->seedDispersal()->execute();
475 werner 163
}
1157 werner 164
 
391 werner 165
void SpeciesSet::regeneration()
166
{
393 werner 167
    if (!GlobalSettings::instance()->model()->settings().regenerationEnabled)
168
        return;
1001 werner 169
    DebugTimer t("seed dispersal (all species)");
615 werner 170
 
475 werner 171
    ThreadRunner runner(mActiveSpecies); // initialize a thread runner object with all active species
172
    runner.run(nc_seed_distribution);
391 werner 173
 
475 werner 174
    if (logLevelDebug())
175
        qDebug() << "seed dispersal finished.";
91 Werner 176
}
211 werner 177
 
391 werner 178
/** newYear is called by Model::runYear at the beginning of a year before any growth occurs.
179
  This is used for various initializations, e.g. to clear seed dispersal maps
180
  */
181
void SpeciesSet::newYear()
182
{
393 werner 183
    if (!GlobalSettings::instance()->model()->settings().regenerationEnabled)
184
        return;
391 werner 185
    foreach(Species *s, mActiveSpecies) {
415 werner 186
        s->newYear();
391 werner 187
    }
188
}
211 werner 189
 
91 Werner 190
/** retrieves variables from the datasource available during the setup of species.
191
  */
192
QVariant SpeciesSet::var(const QString& varName)
193
{
94 Werner 194
    Q_ASSERT(mSetupQuery!=0);
91 Werner 195
 
196
    int idx = mSetupQuery->record().indexOf(varName);
197
    if (idx>=0)
198
        return mSetupQuery->value(idx);
125 Werner 199
    throw IException(QString("SpeciesSet: variable not set: %1").arg(varName));
120 Werner 200
    //throw IException(QString("load species parameter: field %1 not found!").arg(varName));
91 Werner 201
    // lookup in defaults
119 Werner 202
    //qDebug() << "variable" << varName << "not found - using default.";
203
    //return GlobalSettings::instance()->settingDefaultValue(varName);
91 Werner 204
}
209 werner 205
 
206
inline double SpeciesSet::nitrogenResponse(const double &availableNitrogen, const double &NA, const double &NB) const
207
{
208
    if (availableNitrogen<=NB)
209
        return 0;
210
    double x = 1. - exp(NA * (availableNitrogen-NB));
211
    return x;
212
}
213
 
214
/// calculate nitrogen response for a given amount of available nitrogen and a respone class
215
/// for fractional values, the response value is interpolated between the fixedly defined classes (1,2,3)
216
double SpeciesSet::nitrogenResponse(const double availableNitrogen, const double &responseClass) const
217
{
218
    double value1, value2, value3;
219
    if (responseClass>2.) {
220
        if (responseClass==3.)
221
            return nitrogenResponse(availableNitrogen, mNitrogen_3a, mNitrogen_3b);
222
        else {
223
            // interpolate between 2 and 3
224
            value2 = nitrogenResponse(availableNitrogen, mNitrogen_2a, mNitrogen_2b);
225
            value3 = nitrogenResponse(availableNitrogen, mNitrogen_3a, mNitrogen_3b);
226
            return value2 + (responseClass-2)*(value3-value2);
227
        }
228
    }
1160 werner 229
    if (responseClass==2.)
209 werner 230
        return nitrogenResponse(availableNitrogen, mNitrogen_2a, mNitrogen_2b);
1160 werner 231
    if (responseClass==1.)
209 werner 232
        return nitrogenResponse(availableNitrogen, mNitrogen_1a, mNitrogen_1b);
233
    // last ressort: interpolate between 1 and 2
234
    value1 = nitrogenResponse(availableNitrogen, mNitrogen_1a, mNitrogen_1b);
235
    value2 = nitrogenResponse(availableNitrogen, mNitrogen_2a, mNitrogen_2b);
236
    return value1 + (responseClass-1)*(value2-value1);
237
}
238
 
239
/** calculation for the CO2 response for the ambientCO2 for the water- and nitrogen responses given.
240
    The calculation follows Friedlingsstein 1995 (see also links to equations in code)
534 werner 241
    see also: http://iland.boku.ac.at/CO2+response
242
    @param ambientCO2 current CO2 concentration (ppm)
243
    @param nitrogenResponse (yearly) nitrogen response of the species
244
    @param soilWaterReponse soil water response (mean value for a month)
209 werner 245
*/
246
double SpeciesSet::co2Response(const double ambientCO2, const double nitrogenResponse, const double soilWaterResponse) const
247
{
1160 werner 248
    if (nitrogenResponse==0.)
210 werner 249
        return 0.;
250
 
209 werner 251
    double co2_water = 2. - soilWaterResponse;
252
    double beta = mCO2beta0 * co2_water * nitrogenResponse;
253
 
254
    double r =1. +  M_LN2 * beta; // NPP increase for a doubling of atmospheric CO2 (Eq. 17)
255
 
256
    // fertilization function (cf. Farquhar, 1980) based on Michaelis-Menten expressions
257
    double deltaC = mCO2base - mCO2comp;
258
    double K2 = ((2*mCO2base - mCO2comp) - r*deltaC ) / ((r-1.)*deltaC*(2*mCO2base - mCO2comp)); // Eq. 16
259
    double K1 = (1. + K2*deltaC) / deltaC;
260
 
261
    double response = mCO2p0 * K1*(ambientCO2 - mCO2comp) / (1 + K2*(ambientCO2-mCO2comp)); // Eq. 16
262
    return response;
263
 
264
}
211 werner 265
 
274 werner 266
/** calculates the lightResponse based on a value for LRI and the species lightResponseClass.
267
    LightResponse is classified from 1 (very shade inolerant) and 5 (very shade tolerant) and interpolated for values between 1 and 5.
298 werner 268
    Returns a value between 0..1
269
    @sa http://iland.boku.ac.at/allocation#reserve_and_allocation_to_stem_growth */
470 werner 270
double SpeciesSet::lightResponse(const double lightResourceIndex, const double lightResponseClass) const
274 werner 271
{
272
    double low = mLightResponseIntolerant.calculate(lightResourceIndex);
273
    double high = mLightResponseTolerant.calculate(lightResourceIndex);
274
    double result = low + 0.25*(lightResponseClass-1.)*(high-low);
275
    return limit(result, 0., 1.);
214 werner 276
 
274 werner 277
}
278
 
279
 
280