Subversion Repositories public iLand

Rev

Rev 255 | Rev 265 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1
 
90 Werner 2
#ifndef SPECIES_H
3
#define SPECIES_H
38 Werner 4
 
103 Werner 5
 
91 Werner 6
#include "expression.h"
7
 
103 Werner 8
#include "speciesset.h"
102 Werner 9
 
91 Werner 10
class StampContainer; // forwards
38 Werner 11
class Stamp;
91 Werner 12
 
103 Werner 13
 
90 Werner 14
class Species
38 Werner 15
{
16
public:
111 Werner 17
    Species(SpeciesSet *set) { mSet = set; mIndex=set->count(); }
226 werner 18
    const SpeciesSet *speciesSet() const { return mSet; }
91 Werner 19
    // properties
20
    /// @property id 4-character unique identification of the tree species
111 Werner 21
    const QString &id() const { return mId; }
91 Werner 22
    /// the full name (e.g. Picea Abies) of the species
111 Werner 23
    const QString &name() const { return mName; }
145 Werner 24
    int index() const { return mIndex; } ///< unique index of species within current set
179 werner 25
    bool active() const { return true; } ///< active??? todo!
236 werner 26
    int phenologyClass() const { return mPhenologyClass; } ///< phenology class defined in project file. class 0 = evergreen
27
    bool isConiferous() const { return mConiferous; }
28
    bool isEvergreen() const { return mEvergreen; }
136 Werner 29
 
91 Werner 30
    // calculations: allometries
145 Werner 31
    double biomassFoliage(const double dbh) const;
32
    double biomassWoody(const double dbh) const;
33
    double biomassRoot(const double dbh) const;
34
    double allometricRatio_wf() const { return mWoody_b / mFoliage_b; }
35
    double allometricFractionStem(const double dbh) const;
136 Werner 36
 
116 Werner 37
    // turnover rates
145 Werner 38
    double turnoverLeaf() const { return mTurnoverLeaf; }
39
    double turnoverRoot() const { return mTurnoverRoot; }
119 Werner 40
    // hd-values
41
    void hdRange(const double dbh, double &rMinHD, double &rMaxHD);
125 Werner 42
    // growth
145 Werner 43
    double volumeFactor() const { return mVolumeFactor; } ///< factor for volume calculation: V = factor * D^2*H (incorporates density and the form of the bole)
44
    double density() const { return mWoodDensity; } ///< density of stem wood [kg/m3]
45
    double specificLeafArea() const { return mSpecificLeafArea; }
159 werner 46
    // mortality
47
    double deathProb_intrinsic() const { return mDeathProb_intrinsic; }
48
    double deathProb_stress() const { return mDeathProb_stress; }
169 werner 49
    // aging
50
    double aging(const float height, const int age);
209 werner 51
    // environmental responses
52
    double vpdResponse(const double &vpd) const;
53
    double temperatureResponse(const double &delayed_temp) const;
54
    double nitrogenResponse(const double &availableNitrogen) const { return mSet->nitrogenResponse(availableNitrogen, mRespNitrogenClass); }
236 werner 55
    double canopyConductance() const { return mMaxCanopyConductance; } ///< maximum canopy conductance in m/s
257 werner 56
    double soilwaterResponse(const double &relativeSoilWaterContent) const { return 1.; }
110 Werner 57
 
136 Werner 58
    const Stamp* stamp(const float dbh, const float height) const { return mLIPs.stamp(dbh, height);}
39 Werner 59
    // maintenance
91 Werner 60
    void setup();
38 Werner 61
private:
90 Werner 62
    Q_DISABLE_COPY(Species);
136 Werner 63
    // helpers during setup
236 werner 64
    bool boolVar(const QString s) { return mSet->var(s).toBool(); } ///< during setup: get value of variable @p s as a boolean variable.
136 Werner 65
    double doubleVar(const QString s) { return mSet->var(s).toDouble(); }///< during setup: get value of variable @p s as a double.
236 werner 66
    int intVar(const QString s) { return mSet->var(s).toInt(); } ///< during setup: get value of variable @p s as an integer.
136 Werner 67
    QString stringVar(const QString s) { return mSet->var(s).toString(); } ///< during setup: get value of variable @p s as a string.
68
 
91 Werner 69
    SpeciesSet *mSet; ///< ptr. to the "parent" set
136 Werner 70
    StampContainer mLIPs; ///< ptr to the container of the LIP-pattern
91 Werner 71
    QString mId;
72
    QString mName;
111 Werner 73
    int mIndex; ///< internal index within the SpeciesSet
236 werner 74
    bool mConiferous; ///< true if confierous species (vs. broadleaved)
75
    bool mEvergreen; ///< true if evergreen species
136 Werner 76
    // biomass allometries:
77
    double mFoliage_a, mFoliage_b;  ///< allometry (biomass = a * dbh^b) for foliage
78
    double mWoody_a, mWoody_b; ///< allometry (biomass = a * dbh^b) for woody compartments aboveground
79
    double mRoot_a, mRoot_b; ///< allometry (biomass = a * dbh^b) for roots (compound, fine and coarse roots as one pool)
80
    double mBranch_a, mBranch_b; ///< allometry (biomass = a * dbh^b) for branches
81
 
110 Werner 82
    double mSpecificLeafArea; ///< conversion factor from kg OTS to m2 LeafArea
116 Werner 83
    // turnover rates
84
    double mTurnoverLeaf; ///< yearly turnover rate leafs
85
    double mTurnoverRoot; ///< yearly turnover rate root
119 Werner 86
    // height-diameter-relationships
87
    Expression mHDlow; ///< minimum HD-relation as f(d) (open grown tree)
88
    Expression mHDhigh; ///< maximum HD-relation as f(d)
125 Werner 89
    // stem density and taper
90
    double mWoodDensity; ///< density of the wood [kg/m3]
91
    double mFormFactor; ///< taper form factor of the stem [-] used for volume / stem-mass calculation calculation
92
    double mVolumeFactor; ///< factor for volume calculation
159 werner 93
    // mortality
94
    double mDeathProb_intrinsic;  ///< prob. of intrinsic death per year [0..1]
95
    double mDeathProb_stress; ///< max. prob. of death per year when tree suffering maximum stress
169 werner 96
    // Aging
97
    double mMaximumAge; ///< maximum age of species (years)
98
    double mMaximumHeight; ///< maximum height of species (m) for aging
214 werner 99
    Expression mAging;
209 werner 100
    // environmental responses
101
    double mRespVpdExponent; ///< exponent in vpd response calculation (Mäkela 2008)
102
    double mRespTempMin; ///< temperature response calculation offset
103
    double mRespTempMax; ///< temperature response calculation: saturation point for temp. response
104
    double mRespNitrogenClass; ///< nitrogen response class (1..3). fractional values (e.g. 1.2) are interpolated.
236 werner 105
    // water
106
    double mMaxCanopyConductance; ///< maximum canopy conductance for transpiration (m/s)
226 werner 107
    int mPhenologyClass;
214 werner 108
 
38 Werner 109
};
110
 
40 Werner 111
 
119 Werner 112
// inlined functions...
113
inline void Species::hdRange(const double dbh, double &rLowHD, double &rHighHD)
114
{
115
    rLowHD = mHDlow.calculate(dbh);
116
    rHighHD = mHDhigh.calculate(dbh);
117
}
209 werner 118
/** vpdResponse calculates response on vpd.
119
    Input: vpd [kPa]*/
120
inline double Species::vpdResponse(const double &vpd) const
121
{
122
    return exp(mRespVpdExponent * vpd);
123
}
119 Werner 124
 
209 werner 125
/** temperatureResponse calculates response on delayed daily temperature.
126
    Input: average temperature [°C]
127
    Note: slightly different from Mäkela 2008: the maximum parameter (Sk) in iLand is interpreted as the absolute
128
          temperature yielding a response of 1; in Mäkela 2008, Sk is the width of the range (relative to the lower threhold)
129
*/
130
inline double Species::temperatureResponse(const double &delayed_temp) const
131
{
132
    double x = qMax(delayed_temp-mRespTempMin, 0.);
133
    x = qMin(x/(mRespTempMax-mRespTempMin), 1.);
134
    return x;
135
}
136
 
90 Werner 137
#endif // SPECIES_H