Subversion Repositories public iLand

Rev

Rev 546 | Rev 552 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1
 
468 werner 2
#include "snag.h"
3
#include "tree.h"
4
#include "species.h"
5
#include "globalsettings.h"
6
#include "expression.h"
490 werner 7
// for calculation of climate decomposition
8
#include "resourceunit.h"
9
#include "watercycle.h"
10
#include "climate.h"
541 werner 11
#include "model.h"
468 werner 12
 
13
/** @class Snag
14
  Snag deals with carbon / nitrogen fluxes from the forest until the reach soil pools.
490 werner 15
  Snag lives on the level of the ResourceUnit; carbon fluxes from trees enter Snag, and parts of the biomass of snags
468 werner 16
  is subsequently forwarded to the soil sub model.
522 werner 17
  Carbon is stored in three classes (depending on the size)
528 werner 18
  The Snag dynamics class uses the following species parameter:
19
  cnFoliage, cnFineroot, cnWood, snagHalflife, snagKSW
468 werner 20
 
21
  */
22
// static variables
528 werner 23
double Snag::mDBHLower = -1.;
522 werner 24
double Snag::mDBHHigher = 0.;
25
double Snag::mCarbonThreshold[] = {0., 0., 0.};
26
 
534 werner 27
double CNPair::biomassCFraction = biomassCFraction; // get global from globalsettings.h
468 werner 28
 
534 werner 29
/// add biomass and weigh the parameter_value with the current C-content of the pool
30
void CNPool::addBiomass(const double biomass, const double CNratio, const double parameter_value)
31
{
32
    if (biomass==0.)
33
        return;
34
    double new_c = biomass*biomassCFraction;
35
    double p_old = C / (new_c + C);
36
    mParameter = mParameter*p_old + parameter_value*(1.-p_old);
37
    CNPair::addBiomass(biomass, CNratio);
38
}
39
 
40
// increase pool (and weigh the value)
41
void CNPool::operator+=(const CNPool &s)
42
{
43
    if (s.C==0.)
44
        return;
45
    mParameter = parameter(s); // calculate weighted parameter
46
    C+=s.C;
47
    N+=s.N;
48
}
49
 
50
double CNPool::parameter(const CNPool &s) const
51
{
52
    if (s.C==0.)
53
        return parameter();
54
    double p_old = C / (s.C + C);
55
    double result =  mParameter*p_old + s.parameter()*(1.-p_old);
56
    return result;
57
}
58
 
59
 
522 werner 60
void Snag::setupThresholds(const double lower, const double upper)
61
{
62
    if (mDBHLower == lower)
63
        return;
64
    mDBHLower = lower;
65
    mDBHHigher = upper;
66
    mCarbonThreshold[0] = lower / 2.;
67
    mCarbonThreshold[1] = lower + (upper - lower)/2.;
68
    mCarbonThreshold[2] = upper + (upper - lower)/2.;
69
    //# threshold levels for emptying out the dbh-snag-classes
70
    //# derived from Psme woody allometry, converted to C, with a threshold level set to 10%
71
    //# values in kg!
72
    for (int i=0;i<3;i++)
73
        mCarbonThreshold[i] = 0.10568*pow(mCarbonThreshold[i],2.4247)*0.5*0.1;
74
}
75
 
76
 
468 werner 77
Snag::Snag()
78
{
490 werner 79
    mRU = 0;
534 werner 80
    CNPair::setCFraction(biomassCFraction);
468 werner 81
}
82
 
490 werner 83
void Snag::setup( const ResourceUnit *ru)
468 werner 84
{
490 werner 85
    mRU = ru;
86
    mClimateFactor = 0.;
468 werner 87
    // branches
88
    mBranchCounter=0;
89
    for (int i=0;i<3;i++) {
90
        mTimeSinceDeath[i] = 0.;
91
        mNumberOfSnags[i] = 0.;
522 werner 92
        mAvgDbh[i] = 0.;
93
        mAvgHeight[i] = 0.;
94
        mAvgVolume[i] = 0.;
95
        mKSW[i] = 0.;
96
        mCurrentKSW[i] = 0.;
468 werner 97
    }
475 werner 98
    mTotalSnagCarbon = 0.;
528 werner 99
    if (mDBHLower<=0)
100
        throw IException("Snag::setupThresholds() not called or called with invalid parameters.");
468 werner 101
}
102
 
475 werner 103
// debug outputs
104
QList<QVariant> Snag::debugList()
105
{
106
    // list columns
107
    // for three pools
108
    QList<QVariant> list;
109
 
523 werner 110
    // totals
111
    list << mTotalSnagCarbon << mTotalIn.C << mTotalToAtm.C << mSWDtoSoil.C << mSWDtoSoil.N;
477 werner 112
    // fluxes to labile soil pool and to refractory soil pool
524 werner 113
    list << mLabileFlux.C << mLabileFlux.N << mRefractoryFlux.C << mRefractoryFlux.N;
475 werner 114
 
115
    for (int i=0;i<3;i++) {
116
        // pools "swdx_c", "swdx_n", "swdx_count", "swdx_tsd", "toswdx_c", "toswdx_n"
117
        list << mSWD[i].C << mSWD[i].N << mNumberOfSnags[i] << mTimeSinceDeath[i] << mToSWD[i].C << mToSWD[i].N;
524 werner 118
        list << mAvgDbh[i] << mAvgHeight[i] << mAvgVolume[i];
475 werner 119
    }
120
 
540 werner 121
    // branch/coarse wood pools (5 yrs)
122
    for (int i=0;i<5;i++) {
123
        list << mOtherWood[i].C << mOtherWood[i].N;
124
    }
125
//    list << mOtherWood[mBranchCounter].C << mOtherWood[mBranchCounter].N
126
//            << mOtherWood[(mBranchCounter+1)%5].C << mOtherWood[(mBranchCounter+1)%5].N
127
//            << mOtherWood[(mBranchCounter+2)%5].C << mOtherWood[(mBranchCounter+2)%5].N
128
//            << mOtherWood[(mBranchCounter+3)%5].C << mOtherWood[(mBranchCounter+3)%5].N
129
//            << mOtherWood[(mBranchCounter+4)%5].C << mOtherWood[(mBranchCounter+4)%5].N;
475 werner 130
    return list;
131
}
132
 
468 werner 133
void Snag::newYear()
134
{
135
    for (int i=0;i<3;i++) {
136
        mToSWD[i].clear(); // clear transfer pools to standing-woody-debris
522 werner 137
        mCurrentKSW[i] = 0.;
468 werner 138
    }
139
    mLabileFlux.clear();
140
    mRefractoryFlux.clear();
476 werner 141
    mTotalToAtm.clear();
142
    mTotalToExtern.clear();
143
    mTotalIn.clear();
477 werner 144
    mSWDtoSoil.clear();
468 werner 145
}
146
 
490 werner 147
/// calculate the dynamic climate modifier for decomposition 're'
522 werner 148
/// calculation is done on the level of ResourceUnit because the water content per day is needed.
490 werner 149
double Snag::calculateClimateFactors()
150
{
546 werner 151
    double deficit;
490 werner 152
    double ft, fw;
547 werner 153
    const double top_layer_content = mRU->waterCycle()->topLayerWaterContent();
490 werner 154
    double f_sum = 0.;
155
    for (const ClimateDay *day=mRU->climate()->begin(); day!=mRU->climate()->end(); ++day)
156
    {
546 werner 157
        deficit = mRU->waterCycle()->waterDeficit_mm(day->day);
540 werner 158
 
490 werner 159
        ft = exp(308.56*(1./56.02-1./((273.+day->temperature)-227.13)));  // empirical variable Q10 model of Lloyd and Taylor (1994), see also Adair et al. (2008)
546 werner 160
        fw = 1. - limit(deficit / top_layer_content, 0., 1.);
161
        // the water effect: depends on the water deficit; if the deficit is higher than the parameterized
162
        // content of the top layer (where most microbial activity is located), than then fw gets 0.
540 werner 163
 
490 werner 164
        f_sum += ft*fw;
165
    }
166
    // the climate factor is defined as the arithmentic annual mean value
167
    mClimateFactor = f_sum / double(mRU->climate()->daysOfYear());
168
    return mClimateFactor;
169
}
170
 
522 werner 171
/// do the yearly calculation
172
/// see http://iland.boku.ac.at/snag+dynamics
526 werner 173
void Snag::calculateYear()
468 werner 174
{
522 werner 175
    mSWDtoSoil.clear();
532 werner 176
    const double climate_factor_re = calculateClimateFactors(); // calculate anyway, because also the soil module needs it (and currently one can have Snag and Soil only as a couple)
477 werner 177
    if (isEmpty()) // nothing to do
475 werner 178
        return;
179
 
468 werner 180
    // process branches: every year one of the five baskets is emptied and transfered to the refractory soil pool
540 werner 181
    mRefractoryFlux+=mOtherWood[mBranchCounter];
182
 
183
    mOtherWood[mBranchCounter].clear();
468 werner 184
    mBranchCounter= (mBranchCounter+1) % 5; // increase index, roll over to 0.
540 werner 185
    // decay of branches/coarse roots
186
    for (int i=0;i<5;i++) {
187
        if (mOtherWood[i].C>0.) {
188
            double survive_rate = exp(- climate_factor_re * mOtherWood[i].parameter() ); // parameter: the "kyr" value...
189
            mOtherWood[i].C *= survive_rate;
190
        }
191
    }
468 werner 192
 
193
    // process standing snags.
194
    // the input of the current year is in the mToSWD-Pools
195
    for (int i=0;i<3;i++) {
196
 
522 werner 197
        // update the swd-pool with this years' input
198
        if (!mToSWD[i].isEmpty()) {
199
            // update decay rate (apply average yearly input to the state parameters)
200
            mKSW[i] = mKSW[i]*(mSWD[i].C/(mSWD[i].C+mToSWD[i].C)) + mCurrentKSW[i]*(mToSWD[i].C/(mSWD[i].C+mToSWD[i].C));
201
            //move content to the SWD pool
202
            mSWD[i] += mToSWD[i];
203
        }
475 werner 204
 
522 werner 205
        if (mSWD[i].C > 0) {
206
            // reduce the Carbon (note: the N stays, thus the CN ratio changes)
207
            // use the decay rate that is derived as a weighted average of all standing woody debris
523 werner 208
            double survive_rate = exp(-mKSW[i] *climate_factor_re * 1. ); // 1: timestep
209
            mTotalToAtm.C += mSWD[i].C * (1. - survive_rate);
210
            mSWD[i].C *= survive_rate;
468 werner 211
 
522 werner 212
            // transition to downed woody debris
213
            // update: use negative exponential decay, species parameter: half-life
214
            // modified for the climatic effect on decomposition, i.e. if decomp is slower, snags stand longer and vice versa
215
            // this is loosely oriented on Standcarb2 (http://andrewsforest.oregonstate.edu/pubs/webdocs/models/standcarb2.htm),
216
            // where lag times for cohort transitions are linearly modified with re although here individual good or bad years have
217
            // an immediate effect, the average climatic influence should come through (and it is inherently transient)
218
            // note that swd.hl is species-specific, and thus a weighted average over the species in the input (=mortality)
219
            // needs to be calculated, followed by a weighted update of the previous swd.hl.
220
            // As weights here we use stem number, as the processes here pertain individual snags
221
            // calculate the transition probability of SWD to downed dead wood
468 werner 222
 
522 werner 223
            double half_life = mHalfLife[i] / climate_factor_re;
224
            double rate = -M_LN2 / half_life; // M_LN2: math. constant
225
 
226
            // higher decay rate for the class with smallest diameters
227
            if (i==0)
228
                rate*=2.;
229
 
523 werner 230
            double transfer = 1. - exp(rate);
522 werner 231
 
468 werner 232
            // calculate flow to soil pool...
522 werner 233
            mSWDtoSoil += mSWD[i] * transfer;
234
            mRefractoryFlux += mSWD[i] * transfer;
235
            mSWD[i] *= (1.-transfer); // reduce pool
468 werner 236
            // calculate the stem number of remaining snags
522 werner 237
            mNumberOfSnags[i] = mNumberOfSnags[i] * (1. - transfer);
523 werner 238
 
239
            mTimeSinceDeath[i] += 1.;
522 werner 240
            // if stems<0.5, empty the whole cohort into DWD, i.e. release the last bit of C and N and clear the stats
241
            // also, if the Carbon of an average snag is less than 10% of the original average tree
242
            // (derived from allometries for the three diameter classes), the whole cohort is emptied out to DWD
243
            if (mNumberOfSnags[i] < 0.5 || mSWD[i].C / mNumberOfSnags[i] < mCarbonThreshold[i]) {
244
                // clear the pool: add the rest to the soil, clear statistics of the pool
468 werner 245
                mRefractoryFlux += mSWD[i];
522 werner 246
                mSWDtoSoil += mSWD[i];
468 werner 247
                mSWD[i].clear();
522 werner 248
                mAvgDbh[i] = 0.;
249
                mAvgHeight[i] = 0.;
250
                mAvgVolume[i] = 0.;
251
                mKSW[i] = 0.;
252
                mCurrentKSW[i] = 0.;
253
                mHalfLife[i] = 0.;
254
                mTimeSinceDeath[i] = 0.;
468 werner 255
            }
522 werner 256
 
468 werner 257
        }
522 werner 258
 
468 werner 259
    }
522 werner 260
    // total carbon in the snag-container on the RU *after* processing is the content of the
475 werner 261
    // standing woody debris pools + the branches
262
    mTotalSnagCarbon = mSWD[0].C + mSWD[1].C + mSWD[2].C +
540 werner 263
                       mOtherWood[0].C + mOtherWood[1].C + mOtherWood[2].C + mOtherWood[3].C + mOtherWood[4].C;
468 werner 264
}
265
 
266
/// foliage and fineroot litter is transferred during tree growth.
267
void Snag::addTurnoverLitter(const Tree *tree, const double litter_foliage, const double litter_fineroot)
268
{
534 werner 269
    mLabileFlux.addBiomass(litter_foliage, tree->species()->cnFoliage(), tree->species()->snagKyl());
270
    mLabileFlux.addBiomass(litter_fineroot, tree->species()->cnFineroot(), tree->species()->snagKyl());
468 werner 271
}
272
 
273
/// after the death of the tree the five biomass compartments are processed.
274
void Snag::addMortality(const Tree *tree)
275
{
528 werner 276
    const Species *species = tree->species();
468 werner 277
 
278
    // immediate flows: 100% of foliage, 100% of fine roots: they go to the labile pool
534 werner 279
    mLabileFlux.addBiomass(tree->biomassFoliage(), species->cnFoliage(), tree->species()->snagKyl());
280
    mLabileFlux.addBiomass(tree->biomassFineRoot(), species->cnFineroot(), tree->species()->snagKyl());
468 werner 281
 
540 werner 282
    // branches and coarse roots are equally distributed over five years:
283
    double biomass_rest = (tree->biomassBranch()+tree->biomassCoarseRoot()) * 0.2;
468 werner 284
    for (int i=0;i<5; i++)
540 werner 285
        mOtherWood[i].addBiomass(biomass_rest, species->cnWood(), tree->species()->snagKyr());
468 werner 286
 
540 werner 287
    // just for book-keeping: keep track of all inputs into branches / roots / swd
288
    mTotalIn.addBiomass(tree->biomassBranch() + tree->biomassCoarseRoot() + tree->biomassStem(), species->cnWood());
468 werner 289
    // stem biomass is transferred to the standing woody debris pool (SWD), increase stem number of pool
522 werner 290
    int pi = poolIndex(tree->dbh()); // get right transfer pool
291
 
292
    // update statistics - stemnumber-weighted averages
293
    // note: here the calculations are repeated for every died trees (i.e. consecutive weighting ... but delivers the same results)
294
    double p_old = mNumberOfSnags[pi] / (mNumberOfSnags[pi] + 1); // weighting factor for state vars (based on stem numbers)
295
    double p_new = 1. / (mNumberOfSnags[pi] + 1); // weighting factor for added tree (p_old + p_new = 1).
296
    mAvgDbh[pi] = mAvgDbh[pi]*p_old + tree->dbh()*p_new;
297
    mAvgHeight[pi] = mAvgHeight[pi]*p_old + tree->height()*p_new;
298
    mAvgVolume[pi] = mAvgVolume[pi]*p_old + tree->volume()*p_new;
299
    mTimeSinceDeath[pi] = mTimeSinceDeath[pi]*p_old + 1.*p_new;
528 werner 300
    mHalfLife[pi] = mHalfLife[pi]*p_old + species->snagHalflife()* p_new;
522 werner 301
 
302
    // average the decay rate (ksw); this is done based on the carbon content
303
    // aggregate all trees that die in the current year (and save weighted decay rates to CurrentKSW)
304
    if (tree->biomassStem()==0)
305
        throw IException("Snag::addMortality: tree without stem biomass!!");
306
    p_old = mToSWD[pi].C / (mToSWD[pi].C + tree->biomassStem()* biomassCFraction);
307
    p_new =tree->biomassStem()* biomassCFraction / (mToSWD[pi].C + tree->biomassStem()* biomassCFraction);
534 werner 308
    mCurrentKSW[pi] = mCurrentKSW[pi]*p_old + species->snagKsw() * p_new;
522 werner 309
    mNumberOfSnags[pi]++;
523 werner 310
 
311
    // finally add the biomass
534 werner 312
    CNPool &to_swd = mToSWD[pi];
313
    to_swd.addBiomass(tree->biomassStem(), species->cnWood(), tree->species()->snagKyr());
468 werner 314
}
315
 
316
/// add residual biomass of 'tree' after harvesting.
522 werner 317
/// remove_{stem, branch, foliage}_fraction: percentage of biomass compartment that is *removed* by the harvest operation (i.e.: not to stay in the system)
528 werner 318
/// records on harvested biomass is collected (mTotalToExtern-pool).
468 werner 319
void Snag::addHarvest(const Tree* tree, const double remove_stem_fraction, const double remove_branch_fraction, const double remove_foliage_fraction )
320
{
528 werner 321
    const Species *species = tree->species();
468 werner 322
 
323
    // immediate flows: 100% of residual foliage, 100% of fine roots: they go to the labile pool
534 werner 324
    mLabileFlux.addBiomass(tree->biomassFoliage() * (1. - remove_foliage_fraction), species->cnFoliage(), tree->species()->snagKyl());
325
    mLabileFlux.addBiomass(tree->biomassFineRoot(), species->cnFineroot(), tree->species()->snagKyl());
540 werner 326
 
528 werner 327
    // for branches, add all biomass that remains in the forest to the soil
534 werner 328
    mRefractoryFlux.addBiomass(tree->biomassBranch()*(1.-remove_branch_fraction), species->cnWood(), tree->species()->snagKyr());
528 werner 329
    // the same treatment for stem residuals
534 werner 330
    mRefractoryFlux.addBiomass(tree->biomassStem() * remove_stem_fraction, species->cnWood(), tree->species()->snagKyr());
468 werner 331
 
540 werner 332
    // split the corase wood biomass into parts (slower decay)
333
    double biomass_rest = (tree->biomassCoarseRoot()) * 0.2;
334
    for (int i=0;i<5; i++)
335
        mOtherWood[i].addBiomass(biomass_rest, species->cnWood(), tree->species()->snagKyr());
336
 
337
 
528 werner 338
    // for book-keeping...
339
    mTotalToExtern.addBiomass(tree->biomassFoliage()*remove_foliage_fraction +
340
                              tree->biomassBranch()*remove_branch_fraction +
341
                              tree->biomassStem()*remove_stem_fraction, species->cnWood());
468 werner 342
}
343
 
534 werner 344
 
345
 
346