Subversion Repositories public iLand

Rev

Rev 671 | Rev 720 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1
 
671 werner 2
/********************************************************************************************
3
**    iLand - an individual based forest landscape and disturbance model
4
**    http://iland.boku.ac.at
5
**    Copyright (C) 2009-  Werner Rammer, Rupert Seidl
6
**
7
**    This program is free software: you can redistribute it and/or modify
8
**    it under the terms of the GNU General Public License as published by
9
**    the Free Software Foundation, either version 3 of the License, or
10
**    (at your option) any later version.
11
**
12
**    This program is distributed in the hope that it will be useful,
13
**    but WITHOUT ANY WARRANTY; without even the implied warranty of
14
**    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
**    GNU General Public License for more details.
16
**
17
**    You should have received a copy of the GNU General Public License
18
**    along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
********************************************************************************************/
20
 
534 werner 21
/** @class ResourceUnit
22
  ResourceUnit is the spatial unit that encapsulates a forest stand and links to several environmental components
23
  (Climate, Soil, Water, ...).
697 werner 24
  @ingroup core
25
  A resource unit has a size of (currently) 100x100m. Many processes in iLand operate on the level of a ResourceUnit.
26
  Each resource unit has the same Climate and other properties (e.g. available nitrogen).
27
  Proceses on this level are, inter alia, NPP Production (see Production3PG), water calculations (WaterCycle), the modeling
28
  of dead trees (Snag) and soil processes (Soil).
534 werner 29
 
30
  */
31
#include <QtCore>
32
#include "global.h"
33
 
34
#include "resourceunit.h"
35
#include "resourceunitspecies.h"
36
#include "speciesset.h"
37
#include "species.h"
38
#include "production3pg.h"
39
#include "model.h"
40
#include "climate.h"
41
#include "watercycle.h"
42
#include "snag.h"
43
#include "soil.h"
44
#include "helper.h"
45
 
46
ResourceUnit::~ResourceUnit()
47
{
48
    if (mWater)
49
        delete mWater;
50
    mWater = 0;
51
    if (mSnag)
52
        delete mSnag;
53
    if (mSoil)
54
        delete mSoil;
55
 
56
    mSnag = 0;
57
    mSoil = 0;
58
}
59
 
60
ResourceUnit::ResourceUnit(const int index)
61
{
62
    qDeleteAll(mRUSpecies);
63
    mSpeciesSet = 0;
64
    mClimate = 0;
65
    mPixelCount=0;
66
    mStockedArea = 0;
67
    mStockedPixelCount = 0;
68
    mIndex = index;
69
    mSaplingHeightMap = 0;
70
    mEffectiveArea_perWLA = 0.;
71
    mWater = new WaterCycle();
72
    mSnag = 0;
73
    mSoil = 0;
569 werner 74
    mID = 0;
534 werner 75
}
76
 
77
void ResourceUnit::setup()
78
{
79
    mWater->setup(this);
80
 
81
    if (mSnag)
82
        delete mSnag;
83
    mSnag=0;
84
    if (mSoil)
85
        delete mSoil;
86
    mSoil=0;
87
    if (Model::settings().carbonCycleEnabled) {
591 werner 88
        mSoil = new Soil(this);
534 werner 89
        mSnag = new Snag;
90
        mSnag->setup(this);
91
        const XmlHelper &xml=GlobalSettings::instance()->settings();
92
 
93
        // setup contents of the soil of the RU; use values for C and N (kg/ha)
94
        mSoil->setInitialState(CNPool(xml.valueDouble("model.site.youngLabileC", -1),
95
                                      xml.valueDouble("model.site.youngLabileN", -1),
96
                                      xml.valueDouble("model.site.youngLabileDecompRate", -1)),
97
                               CNPool(xml.valueDouble("model.site.youngRefractoryC", -1),
98
                                      xml.valueDouble("model.site.youngRefractoryN", -1),
99
                                      xml.valueDouble("model.site.youngRefractoryDecompRate", -1)),
100
                               CNPair(xml.valueDouble("model.site.somC", -1), xml.valueDouble("model.site.somN", -1)));
101
    }
102
 
103
    // setup variables
104
    mUnitVariables.nitrogenAvailable = GlobalSettings::instance()->settings().valueDouble("model.site.availableNitrogen", 40);
105
 
106
    // if dynamic coupling of soil nitrogen is enabled, the calculate a starting value for available n.
107
    if (mSoil && Model::settings().useDynamicAvailableNitrogen && Model::settings().carbonCycleEnabled) {
108
        mSoil->setClimateFactor(1.);
109
        mSoil->calculateYear();
110
        mUnitVariables.nitrogenAvailable = mSoil->availableNitrogen();
111
    }
664 werner 112
    mHasDeadTrees = false;
534 werner 113
    mAverageAging = 0.;
114
 
115
}
116
void ResourceUnit::setBoundingBox(const QRectF &bb)
117
{
118
    mBoundingBox = bb;
119
    mCornerCoord = GlobalSettings::instance()->model()->grid()->indexAt(bb.topLeft());
120
}
121
 
122
/// set species and setup the species-per-RU-data
123
void ResourceUnit::setSpeciesSet(SpeciesSet *set)
124
{
125
    mSpeciesSet = set;
126
    qDeleteAll(mRUSpecies);
127
 
128
    //mRUSpecies.resize(set->count()); // ensure that the vector space is not relocated
129
    for (int i=0;i<set->count();i++) {
130
        Species *s = const_cast<Species*>(mSpeciesSet->species(i));
131
        if (!s)
132
            throw IException("ResourceUnit::setSpeciesSet: invalid index!");
133
 
134
        ResourceUnitSpecies *rus = new ResourceUnitSpecies();
135
        mRUSpecies.push_back(rus);
136
        rus->setup(s, this);
137
        /* be careful: setup() is called with a pointer somewhere to the content of the mRUSpecies container.
138
           If the container memory is relocated (QVector), the pointer gets invalid!!!
139
           Therefore, a resize() is called before the loop (no resize()-operations during the loop)! */
140
        //mRUSpecies[i].setup(s,this); // setup this element
141
 
142
    }
143
}
144
 
145
ResourceUnitSpecies &ResourceUnit::resourceUnitSpecies(const Species *species)
146
{
147
    return *mRUSpecies[species->index()];
148
}
149
 
150
Tree &ResourceUnit::newTree()
151
{
152
    // start simple: just append to the vector...
153
    if (mTrees.isEmpty())
154
        mTrees.reserve(100); // reserve a junk of memory for trees
155
 
156
    mTrees.append(Tree());
157
    return mTrees.back();
158
}
159
int ResourceUnit::newTreeIndex()
160
{
161
    // start simple: just append to the vector...
162
    mTrees.append(Tree());
163
    return mTrees.count()-1;
164
}
165
 
166
/// remove dead trees from tree list
167
/// reduce size of vector if lots of space is free
168
/// tests showed that this way of cleanup is very fast,
169
/// because no memory allocations are performed (simple memmove())
170
/// when trees are moved.
171
void ResourceUnit::cleanTreeList()
172
{
664 werner 173
    if (!mHasDeadTrees)
174
        return;
175
 
534 werner 176
    QVector<Tree>::iterator last=mTrees.end()-1;
177
    QVector<Tree>::iterator current = mTrees.begin();
178
    while (last>=current && (*last).isDead())
179
        --last;
180
 
181
    while (current<last) {
182
        if ((*current).isDead()) {
183
            *current = *last; // copy data!
184
            --last; //
185
            while (last>=current && (*last).isDead())
186
                --last;
187
        }
188
        ++current;
189
    }
190
    ++last; // last points now to the first dead tree
191
 
192
    // free ressources
193
    if (last!=mTrees.end()) {
194
        mTrees.erase(last, mTrees.end());
195
        if (mTrees.capacity()>100) {
196
            if (mTrees.count() / double(mTrees.capacity()) < 0.2) {
197
                //int target_size = mTrees.count()*2;
198
                //qDebug() << "reduce size from "<<mTrees.capacity() << "to" << target_size;
199
                //mTrees.reserve(qMax(target_size, 100));
664 werner 200
                if (logLevelDebug())
201
                    qDebug() << "reduce tree storage of RU" << index() << " from " << mTrees.capacity() << "to" << mTrees.count();
534 werner 202
                mTrees.squeeze();
203
            }
204
        }
205
    }
664 werner 206
    mHasDeadTrees = false; // reset flag
534 werner 207
}
208
 
209
void ResourceUnit::newYear()
210
{
211
    mAggregatedWLA = 0.;
212
    mAggregatedLA = 0.;
213
    mAggregatedLR = 0.;
214
    mEffectiveArea = 0.;
215
    mPixelCount = mStockedPixelCount = 0;
216
    snagNewYear();
609 werner 217
    if (mSoil)
218
        mSoil->newYear();
534 werner 219
    // clear statistics global and per species...
220
    QList<ResourceUnitSpecies*>::const_iterator i;
221
    QList<ResourceUnitSpecies*>::const_iterator iend = mRUSpecies.constEnd();
222
    mStatistics.clear();
223
    for (i=mRUSpecies.constBegin(); i!=iend; ++i) {
224
        (*i)->statisticsDead().clear();
225
        (*i)->statisticsMgmt().clear();
662 werner 226
        (*i)->changeSapling().newYear();
534 werner 227
    }
228
 
229
}
230
 
231
/** production() is the "stand-level" part of the biomass production (3PG).
232
    - The amount of radiation intercepted by the stand is calculated
233
    - the water cycle is calculated
234
    - statistics for each species are cleared
235
    - The 3PG production for each species and ressource unit is called (calculates species-responses and NPP production)
236
    see also: http://iland.boku.ac.at/individual+tree+light+availability */
237
void ResourceUnit::production()
238
{
239
 
240
    if (mAggregatedWLA==0 || mPixelCount==0) {
241
        // nothing to do...
242
        return;
243
    }
244
 
245
    // the pixel counters are filled during the height-grid-calculations
246
    mStockedArea = 100. * mStockedPixelCount; // m2 (1 height grid pixel = 10x10m)
247
 
248
    // calculate the leaf area index (LAI)
249
    double LAI = mAggregatedLA / mStockedArea;
250
    // calculate the intercepted radiation fraction using the law of Beer Lambert
251
    const double k = Model::settings().lightExtinctionCoefficient;
252
    double interception_fraction = 1. - exp(-k * LAI);
253
    mEffectiveArea = mStockedArea * interception_fraction; // m2
254
 
255
    // calculate the total weighted leaf area on this RU:
256
    mLRI_modification = interception_fraction *  mStockedArea / mAggregatedWLA; // p_WLA
257
    if (mLRI_modification == 0.)
258
        qDebug() << "lri modifaction==0!";
259
 
611 werner 260
    if (logLevelDebug()) {
534 werner 261
    DBGMODE(qDebug() << QString("production: LAI: %1 (intercepted fraction: %2, stocked area: %4). LRI-Multiplier: %3")
262
            .arg(LAI)
263
            .arg(interception_fraction)
264
            .arg(mLRI_modification)
265
            .arg(mStockedArea);
266
    );
611 werner 267
    }
534 werner 268
 
269
    // calculate LAI fractions
270
    QList<ResourceUnitSpecies*>::const_iterator i;
271
    QList<ResourceUnitSpecies*>::const_iterator iend = mRUSpecies.constEnd();
272
    double ru_lai = leafAreaIndex();
273
    if (ru_lai < 1.)
274
        ru_lai = 1.;
275
    // note: LAIFactors are only 1 if sum of LAI is > 1. (see WaterCycle)
276
    for (i=mRUSpecies.constBegin(); i!=iend; ++i) {
277
         (*i)->setLAIfactor((*i)->statistics().leafAreaIndex() / ru_lai);
278
    }
279
 
280
    // soil water model - this determines soil water contents needed for response calculations
281
    {
282
    mWater->run();
283
    }
284
 
285
    // invoke species specific calculation (3PG)
286
    for (i=mRUSpecies.constBegin(); i!=iend; ++i) {
287
        (*i)->calculate(); // CALCULATE 3PG
288
        if (logLevelInfo() &&  (*i)->LAIfactor()>0)
289
            qDebug() << "ru" << mIndex << "species" << (*i)->species()->id() << "LAIfraction" << (*i)->LAIfactor() << "raw_gpp_m2"
290
                     << (*i)->prod3PG().GPPperArea() << "area:" << productiveArea() << "gpp:"
291
                     << productiveArea()*(*i)->prod3PG().GPPperArea()
292
                     << "aging(lastyear):" << averageAging() << "f_env,yr:" << (*i)->prod3PG().fEnvYear();
293
    }
294
}
295
 
296
void ResourceUnit::calculateInterceptedArea()
297
{
298
    if (mAggregatedLR==0) {
299
        mEffectiveArea_perWLA = 0.;
300
        return;
301
    }
302
    Q_ASSERT(mAggregatedLR>0.);
303
    mEffectiveArea_perWLA = mEffectiveArea / mAggregatedLR;
304
    if (logLevelDebug()) qDebug() << "RU: aggregated lightresponse:" << mAggregatedLR  << "eff.area./wla:" << mEffectiveArea_perWLA;
305
}
306
 
307
// function is called immediately before the growth of individuals
308
void ResourceUnit::beforeGrow()
309
{
310
    mAverageAging = 0.;
311
}
312
 
313
// function is called after finishing the indivdual growth / mortality.
314
void ResourceUnit::afterGrow()
315
{
316
    mAverageAging = leafArea()>0.?mAverageAging/leafArea():0; // calculate aging value (calls to addAverageAging() by individual trees)
317
    if (mAverageAging>0. && mAverageAging<0.00001)
318
        qDebug() << "ru" << mIndex << "aging <0.00001";
319
    if (mAverageAging<0. || mAverageAging>1.)
320
        qDebug() << "Average aging invalid: (RU, LAI):" << index() << mStatistics.leafAreaIndex();
321
}
322
 
323
void ResourceUnit::yearEnd()
324
{
325
    // calculate statistics for all tree species of the ressource unit
326
    int c = mRUSpecies.count();
327
    for (int i=0;i<c; i++) {
328
        mRUSpecies[i]->statisticsDead().calculate(); // calculate the dead trees
329
        mRUSpecies[i]->statisticsMgmt().calculate(); // stats of removed trees
330
        mRUSpecies[i]->updateGWL(); // get sum of dead trees (died + removed)
331
        mRUSpecies[i]->statistics().calculate(); // calculate the living (and add removed volume to gwl)
332
        mStatistics.add(mRUSpecies[i]->statistics());
333
    }
334
    mStatistics.calculate(); // aggreagte on stand level
335
 
336
}
337
 
338
void ResourceUnit::addTreeAgingForAllTrees()
339
{
340
    mAverageAging = 0.;
341
    foreach(const Tree &t, mTrees) {
342
        addTreeAging(t.leafArea(), t.species()->aging(t.height(), t.age()));
343
    }
344
 
345
}
346
 
347
/// refresh of tree based statistics.
348
/// WARNING: this function is only called once (during startup).
349
/// see function "yearEnd()" above!!!
350
void ResourceUnit::createStandStatistics()
351
{
352
    // clear statistics (ru-level and ru-species level)
353
    mStatistics.clear();
354
    for (int i=0;i<mRUSpecies.count();i++) {
355
        mRUSpecies[i]->statistics().clear();
356
        mRUSpecies[i]->statisticsDead().clear();
357
        mRUSpecies[i]->statisticsMgmt().clear();
358
    }
359
 
360
    // add all trees to the statistics objects of the species
361
    foreach(const Tree &t, mTrees) {
362
        if (!t.isDead())
363
            resourceUnitSpecies(t.species()).statistics().add(&t, 0);
364
    }
365
    // summarize statistics for the whole resource unit
366
    for (int i=0;i<mRUSpecies.count();i++) {
367
        mRUSpecies[i]->statistics().calculate();
368
        mStatistics.add(mRUSpecies[i]->statistics());
369
    }
370
    mStatistics.calculate();
575 werner 371
    mAverageAging = mStatistics.leafAreaIndex()>0.?mAverageAging / (mStatistics.leafAreaIndex()*stockableArea()):0.;
534 werner 372
    if (mAverageAging<0. || mAverageAging>1.)
373
        qDebug() << "Average aging invalid: (RU, LAI):" << index() << mStatistics.leafAreaIndex();
374
}
375
 
376
void ResourceUnit::setMaxSaplingHeightAt(const QPoint &position, const float height)
377
{
378
    Q_ASSERT(mSaplingHeightMap);
379
    int pixel_index = cPxPerRU*(position.x()-mCornerCoord.x())+(position.y()-mCornerCoord.y());
380
    if (pixel_index<0 || pixel_index>=cPxPerRU*cPxPerRU) {
381
        qDebug() << "setSaplingHeightAt-Error for position" << position << "for RU at" << boundingBox() << "with corner" << mCornerCoord;
382
    } else {
383
        if (mSaplingHeightMap[pixel_index]<height)
384
            mSaplingHeightMap[pixel_index]=height;
385
    }
386
}
387
 
388
/// clear all saplings of all species on a given position (after recruitment)
389
void ResourceUnit::clearSaplings(const QPoint &position)
390
{
391
    foreach(ResourceUnitSpecies* rus, mRUSpecies)
392
        rus->clearSaplings(position);
393
 
394
}
395
 
662 werner 396
/// kill all saplings within a given rect
397
void ResourceUnit::clearSaplings(const QRectF pixel_rect, const bool remove_from_soil)
398
{
399
    foreach(ResourceUnitSpecies* rus, mRUSpecies) {
400
        rus->changeSapling().clearSaplings(pixel_rect, remove_from_soil);
401
    }
402
 
403
}
404
 
600 werner 405
float ResourceUnit::saplingHeightForInit(const QPoint &position) const
406
{
407
    double maxh = 0.;
408
    foreach(ResourceUnitSpecies* rus, mRUSpecies)
409
        maxh = qMax(maxh, rus->sapling().heightAt(position));
410
    return maxh;
411
}
534 werner 412
 
413
void ResourceUnit::calculateCarbonCycle()
414
{
415
    if (!snag())
416
        return;
417
 
418
    // (1) calculate the snag dynamics
419
    // because all carbon/nitrogen-flows from trees to the soil are routed through the snag-layer,
420
    // all soil inputs (litter + deadwood) are collected in the Snag-object.
421
    snag()->calculateYear();
422
    soil()->setClimateFactor( snag()->climateFactor() ); // the climate factor is only calculated once
423
    soil()->setSoilInput( snag()->labileFlux(), snag()->refractoryFlux());
424
    soil()->calculateYear(); // update the ICBM/2N model
425
    // use available nitrogen?
426
    if (Model::settings().useDynamicAvailableNitrogen)
427
        mUnitVariables.nitrogenAvailable = soil()->availableNitrogen();
428
 
429
    // debug output
430
    if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dCarbonCycle) && !snag()->isEmpty()) {
431
        DebugList &out = GlobalSettings::instance()->debugList(index(), GlobalSettings::dCarbonCycle);
605 werner 432
        out << index() << id(); // resource unit index and id
534 werner 433
        out << snag()->debugList(); // snag debug outs
434
        out << soil()->debugList(); // ICBM/2N debug outs
435
    }
436
 
437
}
600 werner 438
 
439