Rev 454 | Rev 461 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | |||
189 | iland | 2 | /** @class ResourceUnit |
3 | ResourceUnit is the spatial unit that encapsulates a forest stand and links to several environmental components |
||
92 | Werner | 4 | (Climate, Soil, Water, ...). |
5 | |||
6 | */ |
||
7 | #include <QtCore> |
||
8 | #include "global.h" |
||
9 | |||
189 | iland | 10 | #include "resourceunit.h" |
229 | werner | 11 | #include "resourceunitspecies.h" |
111 | Werner | 12 | #include "speciesset.h" |
13 | #include "species.h" |
||
113 | Werner | 14 | #include "production3pg.h" |
200 | werner | 15 | #include "model.h" |
208 | werner | 16 | #include "climate.h" |
241 | werner | 17 | #include "watercycle.h" |
18 | #include "helper.h" |
||
92 | Werner | 19 | |
241 | werner | 20 | ResourceUnit::~ResourceUnit() |
21 | { |
||
22 | if (mWater) |
||
23 | delete mWater; |
||
24 | } |
||
111 | Werner | 25 | |
189 | iland | 26 | ResourceUnit::ResourceUnit(const int index) |
92 | Werner | 27 | { |
455 | werner | 28 | qDeleteAll(mRUSpecies); |
94 | Werner | 29 | mSpeciesSet = 0; |
208 | werner | 30 | mClimate = 0; |
331 | werner | 31 | mPixelCount=0; |
453 | werner | 32 | mStockedArea = 0; |
33 | mStockedPixelCount = 0; |
||
113 | Werner | 34 | mIndex = index; |
450 | werner | 35 | mSaplingHeightMap = 0; |
241 | werner | 36 | mWater = new WaterCycle(); |
37 | |||
157 | werner | 38 | mTrees.reserve(100); // start with space for 100 trees. |
92 | Werner | 39 | } |
105 | Werner | 40 | |
241 | werner | 41 | void ResourceUnit::setup() |
42 | { |
||
43 | mWater->setup(this); |
||
281 | werner | 44 | // setup variables |
45 | mUnitVariables.nitrogenAvailable = GlobalSettings::instance()->settings().valueDouble("model.site.availableNitrogen", 40); |
||
376 | werner | 46 | mAverageAging = 0.; |
281 | werner | 47 | |
241 | werner | 48 | } |
451 | werner | 49 | void ResourceUnit::setBoundingBox(const QRectF &bb) |
50 | { |
||
51 | mBoundingBox = bb; |
||
52 | mCornerCoord = GlobalSettings::instance()->model()->grid()->indexAt(bb.topLeft()); |
||
53 | } |
||
241 | werner | 54 | |
111 | Werner | 55 | /// set species and setup the species-per-RU-data |
189 | iland | 56 | void ResourceUnit::setSpeciesSet(SpeciesSet *set) |
111 | Werner | 57 | { |
58 | mSpeciesSet = set; |
||
455 | werner | 59 | qDeleteAll(mRUSpecies); |
60 | |||
61 | //mRUSpecies.resize(set->count()); // ensure that the vector space is not relocated |
||
111 | Werner | 62 | for (int i=0;i<set->count();i++) { |
63 | Species *s = const_cast<Species*>(mSpeciesSet->species(i)); |
||
64 | if (!s) |
||
189 | iland | 65 | throw IException("ResourceUnit::setSpeciesSet: invalid index!"); |
229 | werner | 66 | |
455 | werner | 67 | ResourceUnitSpecies *rus = new ResourceUnitSpecies(); |
68 | mRUSpecies.push_back(rus); |
||
69 | rus->setup(s, this); |
||
229 | werner | 70 | /* be careful: setup() is called with a pointer somewhere to the content of the mRUSpecies container. |
71 | If the container memory is relocated (QVector), the pointer gets invalid!!! |
||
72 | Therefore, a resize() is called before the loop (no resize()-operations during the loop)! */ |
||
455 | werner | 73 | //mRUSpecies[i].setup(s,this); // setup this element |
277 | werner | 74 | |
111 | Werner | 75 | } |
76 | } |
||
77 | |||
200 | werner | 78 | ResourceUnitSpecies &ResourceUnit::resourceUnitSpecies(const Species *species) |
111 | Werner | 79 | { |
455 | werner | 80 | return *mRUSpecies[species->index()]; |
111 | Werner | 81 | } |
82 | |||
189 | iland | 83 | Tree &ResourceUnit::newTree() |
105 | Werner | 84 | { |
85 | // start simple: just append to the vector... |
||
86 | mTrees.append(Tree()); |
||
87 | return mTrees.back(); |
||
88 | } |
||
287 | werner | 89 | int ResourceUnit::newTreeIndex() |
90 | { |
||
91 | // start simple: just append to the vector... |
||
92 | mTrees.append(Tree()); |
||
93 | return mTrees.count()-1; |
||
94 | } |
||
107 | Werner | 95 | |
157 | werner | 96 | /// remove dead trees from tree list |
97 | /// reduce size of vector if lots of space is free |
||
98 | /// tests showed that this way of cleanup is very fast, |
||
99 | /// because no memory allocations are performed (simple memmove()) |
||
100 | /// when trees are moved. |
||
189 | iland | 101 | void ResourceUnit::cleanTreeList() |
157 | werner | 102 | { |
103 | QVector<Tree>::iterator last=mTrees.end()-1; |
||
104 | QVector<Tree>::iterator current = mTrees.begin(); |
||
158 | werner | 105 | while (last>=current && (*last).isDead()) |
157 | werner | 106 | --last; |
107 | Werner | 107 | |
157 | werner | 108 | while (current<last) { |
158 | werner | 109 | if ((*current).isDead()) { |
157 | werner | 110 | *current = *last; // copy data! |
111 | --last; // |
||
158 | werner | 112 | while (last>=current && (*last).isDead()) |
157 | werner | 113 | --last; |
114 | } |
||
115 | ++current; |
||
116 | } |
||
117 | ++last; // last points now to the first dead tree |
||
118 | |||
119 | // free ressources |
||
278 | werner | 120 | if (last!=mTrees.end()) { |
121 | mTrees.erase(last, mTrees.end()); |
||
122 | if (mTrees.capacity()>100) { |
||
123 | if (mTrees.count() / double(mTrees.capacity()) < 0.2) { |
||
124 | int target_size = mTrees.count()*2; |
||
125 | qDebug() << "reduce size from "<<mTrees.capacity() << "to" << target_size; |
||
126 | mTrees.reserve(qMax(target_size, 100)); |
||
127 | } |
||
157 | werner | 128 | } |
129 | } |
||
130 | } |
||
131 | |||
189 | iland | 132 | void ResourceUnit::newYear() |
107 | Werner | 133 | { |
251 | werner | 134 | mAggregatedWLA = 0.; |
135 | mAggregatedLA = 0.; |
||
136 | mAggregatedLR = 0.; |
||
137 | mEffectiveArea = 0.; |
||
151 | iland | 138 | mPixelCount = mStockedPixelCount = 0; |
111 | Werner | 139 | // clear statistics global and per species... |
455 | werner | 140 | QList<ResourceUnitSpecies*>::const_iterator i; |
141 | QList<ResourceUnitSpecies*>::const_iterator iend = mRUSpecies.constEnd(); |
||
278 | werner | 142 | mStatistics.clear(); |
455 | werner | 143 | for (i=mRUSpecies.constBegin(); i!=iend; ++i) { |
144 | (*i)->statisticsDead().clear(); |
||
145 | (*i)->statisticsMgmt().clear(); |
||
278 | werner | 146 | } |
147 | |||
107 | Werner | 148 | } |
110 | Werner | 149 | |
112 | Werner | 150 | /** production() is the "stand-level" part of the biomass production (3PG). |
151 | - The amount of radiation intercepted by the stand is calculated |
||
331 | werner | 152 | - the water cycle is calculated |
153 | - statistics for each species are cleared |
||
154 | - The 3PG production for each species and ressource unit is called (calculates species-responses and NPP production) |
||
298 | werner | 155 | see also: http://iland.boku.ac.at/individual+tree+light+availability */ |
189 | iland | 156 | void ResourceUnit::production() |
110 | Werner | 157 | { |
241 | werner | 158 | |
151 | iland | 159 | if (mAggregatedWLA==0 || mPixelCount==0) { |
112 | Werner | 160 | // nothing to do... |
161 | return; |
||
162 | } |
||
151 | iland | 163 | |
164 | // the pixel counters are filled during the height-grid-calculations |
||
230 | werner | 165 | mStockedArea = 100. * mStockedPixelCount; // m2 (1 height grid pixel = 10x10m) |
166 | |||
112 | Werner | 167 | // calculate the leaf area index (LAI) |
151 | iland | 168 | double LAI = mAggregatedLA / mStockedArea; |
112 | Werner | 169 | // calculate the intercepted radiation fraction using the law of Beer Lambert |
200 | werner | 170 | const double k = Model::settings().lightExtinctionCoefficient; |
112 | Werner | 171 | double interception_fraction = 1. - exp(-k * LAI); |
251 | werner | 172 | mEffectiveArea = mStockedArea * interception_fraction; // m2 |
112 | Werner | 173 | |
230 | werner | 174 | // calculate the total weighted leaf area on this RU: |
251 | werner | 175 | mLRI_modification = interception_fraction * mStockedArea / mAggregatedWLA; |
265 | werner | 176 | if (mLRI_modification == 0.) |
177 | qDebug() << "lri modifaction==0!"; |
||
205 | werner | 178 | |
251 | werner | 179 | |
180 | DBGMODE(qDebug() << QString("production: LAI: %1 (intercepted fraction: %2, stocked area: %4). LRI-Multiplier: %3") |
||
230 | werner | 181 | .arg(LAI) |
182 | .arg(interception_fraction) |
||
251 | werner | 183 | .arg(mLRI_modification) |
230 | werner | 184 | .arg(mStockedArea); |
185 | ); |
||
367 | werner | 186 | |
187 | // calculate LAI fractions |
||
455 | werner | 188 | QList<ResourceUnitSpecies*>::const_iterator i; |
189 | QList<ResourceUnitSpecies*>::const_iterator iend = mRUSpecies.constEnd(); |
||
190 | for (i=mRUSpecies.constBegin(); i!=iend; ++i) { |
||
191 | (*i)->setLAIfactor((*i)->statistics().leafAreaIndex() / leafAreaIndex()); |
||
367 | werner | 192 | } |
193 | |||
241 | werner | 194 | // soil water model - this determines soil water contents needed for response calculations |
195 | { |
||
196 | DebugTimer tw("water:run"); |
||
197 | mWater->run(); |
||
198 | } |
||
112 | Werner | 199 | |
200 | // invoke species specific calculation (3PG) |
||
455 | werner | 201 | for (i=mRUSpecies.constBegin(); i!=iend; ++i) { |
202 | (*i)->calculate(); |
||
203 | if (logLevelInfo() && (*i)->LAIfactor()>0) |
||
204 | qDebug() << "ru" << mIndex << "species" << (*i)->species()->id() << "LAIfraction" << (*i)->LAIfactor() << "raw_gpp_m2" |
||
205 | << (*i)->prod3PG().GPPperArea() << "area:" << productiveArea() << "gpp:" |
||
206 | << productiveArea()*(*i)->prod3PG().GPPperArea() |
||
207 | << "aging(lastyear):" << averageAging() << "f_env,yr:" << (*i)->prod3PG().fEnvYear(); |
||
112 | Werner | 208 | } |
110 | Werner | 209 | } |
210 | |||
251 | werner | 211 | void ResourceUnit::calculateInterceptedArea() |
212 | { |
||
265 | werner | 213 | if (mAggregatedLR==0) { |
214 | mEffectiveArea_perWLA = 0.; |
||
215 | return; |
||
216 | } |
||
251 | werner | 217 | Q_ASSERT(mAggregatedLR>0.); |
218 | mEffectiveArea_perWLA = mEffectiveArea / mAggregatedLR; |
||
431 | werner | 219 | if (logLevelDebug()) qDebug() << "RU: aggregated lightresponse:" << mAggregatedLR << "eff.area./wla:" << mEffectiveArea_perWLA; |
251 | werner | 220 | } |
221 | |||
376 | werner | 222 | // function is called immediately before the growth of individuals |
223 | void ResourceUnit::beforeGrow() |
||
224 | { |
||
225 | mAverageAging = 0.; |
||
226 | } |
||
227 | |||
228 | // function is called after finishing the indivdual growth / mortality. |
||
229 | void ResourceUnit::afterGrow() |
||
230 | { |
||
231 | mAverageAging = leafArea()>0.?mAverageAging/leafArea():0; // calculate aging value (calls to addAverageAging() by individual trees) |
||
232 | if (mAverageAging>0. && mAverageAging<0.00001) |
||
233 | qDebug() << "ru" << mIndex << "aging <0.00001"; |
||
234 | } |
||
235 | |||
189 | iland | 236 | void ResourceUnit::yearEnd() |
180 | werner | 237 | { |
238 | // calculate statistics for all tree species of the ressource unit |
||
239 | int c = mRUSpecies.count(); |
||
240 | for (int i=0;i<c; i++) { |
||
455 | werner | 241 | mRUSpecies[i]->statisticsDead().calculate(); // calculate the dead trees |
242 | mRUSpecies[i]->statisticsMgmt().calculate(); // stats of removed trees |
||
243 | mRUSpecies[i]->updateGWL(); // get sum of dead trees (died + removed) |
||
244 | mRUSpecies[i]->statistics().calculate(); // calculate the living (and add removed volume to gwl) |
||
245 | mStatistics.add(mRUSpecies[i]->statistics()); |
||
180 | werner | 246 | } |
247 | mStatistics.calculate(); // aggreagte on stand level |
||
248 | } |
||
249 | |||
241 | werner | 250 | /// refresh of tree based statistics. |
240 | werner | 251 | void ResourceUnit::createStandStatistics() |
252 | { |
||
241 | werner | 253 | // clear statistics (ru-level and ru-species level) |
240 | werner | 254 | mStatistics.clear(); |
262 | werner | 255 | for (int i=0;i<mRUSpecies.count();i++) { |
455 | werner | 256 | mRUSpecies[i]->statistics().clear(); |
257 | mRUSpecies[i]->statisticsDead().clear(); |
||
258 | mRUSpecies[i]->statisticsMgmt().clear(); |
||
262 | werner | 259 | } |
241 | werner | 260 | |
261 | // add all trees to the statistics objects of the species |
||
240 | werner | 262 | foreach(const Tree &t, mTrees) { |
263 | if (!t.isDead()) |
||
257 | werner | 264 | resourceUnitSpecies(t.species()).statistics().add(&t, 0); |
240 | werner | 265 | } |
241 | werner | 266 | // summarize statistics for the whole resource unit |
240 | werner | 267 | for (int i=0;i<mRUSpecies.count();i++) { |
455 | werner | 268 | mRUSpecies[i]->statistics().calculate(); |
269 | mStatistics.add(mRUSpecies[i]->statistics()); |
||
240 | werner | 270 | } |
331 | werner | 271 | mStatistics.calculate(); |
376 | werner | 272 | mAverageAging = mStatistics.leafAreaIndex()>0.?mAverageAging / (mStatistics.leafAreaIndex()*area()):0.; |
240 | werner | 273 | } |
452 | werner | 274 | |
275 | void ResourceUnit::setSaplingHeightAt(const QPoint &position, const float height) |
||
276 | { |
||
277 | Q_ASSERT(mSaplingHeightMap); |
||
278 | int pixel_index = cPxPerRU*(position.x()-mCornerCoord.x())+(position.y()-mCornerCoord.y()); |
||
279 | if (pixel_index<0 || pixel_index>=cPxPerRU*cPxPerRU) |
||
453 | werner | 280 | qDebug() << "setSaplingHeightAt-Error for position" << position << "for RU at" << boundingBox() << "with corner" << mCornerCoord; |
452 | werner | 281 | else |
282 | mSaplingHeightMap[pixel_index]=height; |
||
283 | } |
||
284 | |||
454 | werner | 285 | /// clear all saplings of all species on a given position (after recruitment) |
286 | void ResourceUnit::clearSaplings(const QPoint &position) |
||
287 | { |
||
455 | werner | 288 | foreach(ResourceUnitSpecies* rus, mRUSpecies) |
289 | rus->clearSaplings(position); |
||
454 | werner | 290 | |
291 | } |
||
292 |