Rev 453 | Rev 455 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | |||
189 | iland | 2 | /** @class ResourceUnit |
3 | ResourceUnit is the spatial unit that encapsulates a forest stand and links to several environmental components |
||
92 | Werner | 4 | (Climate, Soil, Water, ...). |
5 | |||
6 | */ |
||
7 | #include <QtCore> |
||
8 | #include "global.h" |
||
9 | |||
189 | iland | 10 | #include "resourceunit.h" |
229 | werner | 11 | #include "resourceunitspecies.h" |
111 | Werner | 12 | #include "speciesset.h" |
13 | #include "species.h" |
||
113 | Werner | 14 | #include "production3pg.h" |
200 | werner | 15 | #include "model.h" |
208 | werner | 16 | #include "climate.h" |
241 | werner | 17 | #include "watercycle.h" |
18 | #include "helper.h" |
||
92 | Werner | 19 | |
241 | werner | 20 | ResourceUnit::~ResourceUnit() |
21 | { |
||
22 | if (mWater) |
||
23 | delete mWater; |
||
24 | } |
||
111 | Werner | 25 | |
189 | iland | 26 | ResourceUnit::ResourceUnit(const int index) |
92 | Werner | 27 | { |
94 | Werner | 28 | mSpeciesSet = 0; |
208 | werner | 29 | mClimate = 0; |
331 | werner | 30 | mPixelCount=0; |
453 | werner | 31 | mStockedArea = 0; |
32 | mStockedPixelCount = 0; |
||
113 | Werner | 33 | mIndex = index; |
450 | werner | 34 | mSaplingHeightMap = 0; |
241 | werner | 35 | mWater = new WaterCycle(); |
36 | |||
157 | werner | 37 | mTrees.reserve(100); // start with space for 100 trees. |
92 | Werner | 38 | } |
105 | Werner | 39 | |
241 | werner | 40 | void ResourceUnit::setup() |
41 | { |
||
42 | mWater->setup(this); |
||
281 | werner | 43 | // setup variables |
44 | mUnitVariables.nitrogenAvailable = GlobalSettings::instance()->settings().valueDouble("model.site.availableNitrogen", 40); |
||
376 | werner | 45 | mAverageAging = 0.; |
281 | werner | 46 | |
241 | werner | 47 | } |
451 | werner | 48 | void ResourceUnit::setBoundingBox(const QRectF &bb) |
49 | { |
||
50 | mBoundingBox = bb; |
||
51 | mCornerCoord = GlobalSettings::instance()->model()->grid()->indexAt(bb.topLeft()); |
||
52 | } |
||
241 | werner | 53 | |
111 | Werner | 54 | /// set species and setup the species-per-RU-data |
189 | iland | 55 | void ResourceUnit::setSpeciesSet(SpeciesSet *set) |
111 | Werner | 56 | { |
57 | mSpeciesSet = set; |
||
58 | mRUSpecies.clear(); |
||
229 | werner | 59 | mRUSpecies.resize(set->count()); // ensure that the vector space is not relocated |
111 | Werner | 60 | for (int i=0;i<set->count();i++) { |
61 | Species *s = const_cast<Species*>(mSpeciesSet->species(i)); |
||
62 | if (!s) |
||
189 | iland | 63 | throw IException("ResourceUnit::setSpeciesSet: invalid index!"); |
229 | werner | 64 | |
65 | /* be careful: setup() is called with a pointer somewhere to the content of the mRUSpecies container. |
||
66 | If the container memory is relocated (QVector), the pointer gets invalid!!! |
||
67 | Therefore, a resize() is called before the loop (no resize()-operations during the loop)! */ |
||
68 | mRUSpecies[i].setup(s,this); // setup this element |
||
277 | werner | 69 | |
111 | Werner | 70 | } |
71 | } |
||
72 | |||
200 | werner | 73 | ResourceUnitSpecies &ResourceUnit::resourceUnitSpecies(const Species *species) |
111 | Werner | 74 | { |
75 | return mRUSpecies[species->index()]; |
||
76 | } |
||
77 | |||
189 | iland | 78 | Tree &ResourceUnit::newTree() |
105 | Werner | 79 | { |
80 | // start simple: just append to the vector... |
||
81 | mTrees.append(Tree()); |
||
82 | return mTrees.back(); |
||
83 | } |
||
287 | werner | 84 | int ResourceUnit::newTreeIndex() |
85 | { |
||
86 | // start simple: just append to the vector... |
||
87 | mTrees.append(Tree()); |
||
88 | return mTrees.count()-1; |
||
89 | } |
||
107 | Werner | 90 | |
157 | werner | 91 | /// remove dead trees from tree list |
92 | /// reduce size of vector if lots of space is free |
||
93 | /// tests showed that this way of cleanup is very fast, |
||
94 | /// because no memory allocations are performed (simple memmove()) |
||
95 | /// when trees are moved. |
||
189 | iland | 96 | void ResourceUnit::cleanTreeList() |
157 | werner | 97 | { |
98 | QVector<Tree>::iterator last=mTrees.end()-1; |
||
99 | QVector<Tree>::iterator current = mTrees.begin(); |
||
158 | werner | 100 | while (last>=current && (*last).isDead()) |
157 | werner | 101 | --last; |
107 | Werner | 102 | |
157 | werner | 103 | while (current<last) { |
158 | werner | 104 | if ((*current).isDead()) { |
157 | werner | 105 | *current = *last; // copy data! |
106 | --last; // |
||
158 | werner | 107 | while (last>=current && (*last).isDead()) |
157 | werner | 108 | --last; |
109 | } |
||
110 | ++current; |
||
111 | } |
||
112 | ++last; // last points now to the first dead tree |
||
113 | |||
114 | // free ressources |
||
278 | werner | 115 | if (last!=mTrees.end()) { |
116 | mTrees.erase(last, mTrees.end()); |
||
117 | if (mTrees.capacity()>100) { |
||
118 | if (mTrees.count() / double(mTrees.capacity()) < 0.2) { |
||
119 | int target_size = mTrees.count()*2; |
||
120 | qDebug() << "reduce size from "<<mTrees.capacity() << "to" << target_size; |
||
121 | mTrees.reserve(qMax(target_size, 100)); |
||
122 | } |
||
157 | werner | 123 | } |
124 | } |
||
125 | } |
||
126 | |||
189 | iland | 127 | void ResourceUnit::newYear() |
107 | Werner | 128 | { |
251 | werner | 129 | mAggregatedWLA = 0.; |
130 | mAggregatedLA = 0.; |
||
131 | mAggregatedLR = 0.; |
||
132 | mEffectiveArea = 0.; |
||
151 | iland | 133 | mPixelCount = mStockedPixelCount = 0; |
111 | Werner | 134 | // clear statistics global and per species... |
278 | werner | 135 | ResourceUnitSpecies *i; |
136 | QVector<ResourceUnitSpecies>::iterator iend = mRUSpecies.end(); |
||
137 | mStatistics.clear(); |
||
138 | for (i=mRUSpecies.begin(); i!=iend; ++i) { |
||
139 | i->statisticsDead().clear(); |
||
140 | i->statisticsMgmt().clear(); |
||
141 | } |
||
142 | |||
107 | Werner | 143 | } |
110 | Werner | 144 | |
112 | Werner | 145 | /** production() is the "stand-level" part of the biomass production (3PG). |
146 | - The amount of radiation intercepted by the stand is calculated |
||
331 | werner | 147 | - the water cycle is calculated |
148 | - statistics for each species are cleared |
||
149 | - The 3PG production for each species and ressource unit is called (calculates species-responses and NPP production) |
||
298 | werner | 150 | see also: http://iland.boku.ac.at/individual+tree+light+availability */ |
189 | iland | 151 | void ResourceUnit::production() |
110 | Werner | 152 | { |
241 | werner | 153 | |
151 | iland | 154 | if (mAggregatedWLA==0 || mPixelCount==0) { |
112 | Werner | 155 | // nothing to do... |
156 | return; |
||
157 | } |
||
151 | iland | 158 | |
159 | // the pixel counters are filled during the height-grid-calculations |
||
230 | werner | 160 | mStockedArea = 100. * mStockedPixelCount; // m2 (1 height grid pixel = 10x10m) |
161 | |||
112 | Werner | 162 | // calculate the leaf area index (LAI) |
151 | iland | 163 | double LAI = mAggregatedLA / mStockedArea; |
112 | Werner | 164 | // calculate the intercepted radiation fraction using the law of Beer Lambert |
200 | werner | 165 | const double k = Model::settings().lightExtinctionCoefficient; |
112 | Werner | 166 | double interception_fraction = 1. - exp(-k * LAI); |
251 | werner | 167 | mEffectiveArea = mStockedArea * interception_fraction; // m2 |
112 | Werner | 168 | |
230 | werner | 169 | // calculate the total weighted leaf area on this RU: |
251 | werner | 170 | mLRI_modification = interception_fraction * mStockedArea / mAggregatedWLA; |
265 | werner | 171 | if (mLRI_modification == 0.) |
172 | qDebug() << "lri modifaction==0!"; |
||
205 | werner | 173 | |
251 | werner | 174 | |
175 | DBGMODE(qDebug() << QString("production: LAI: %1 (intercepted fraction: %2, stocked area: %4). LRI-Multiplier: %3") |
||
230 | werner | 176 | .arg(LAI) |
177 | .arg(interception_fraction) |
||
251 | werner | 178 | .arg(mLRI_modification) |
230 | werner | 179 | .arg(mStockedArea); |
180 | ); |
||
367 | werner | 181 | |
182 | // calculate LAI fractions |
||
183 | ResourceUnitSpecies *i; |
||
184 | QVector<ResourceUnitSpecies>::iterator iend = mRUSpecies.end(); |
||
185 | for (i=mRUSpecies.begin(); i!=iend; ++i) { |
||
186 | i->setLAIfactor(i->statistics().leafAreaIndex() / leafAreaIndex()); |
||
187 | } |
||
188 | |||
241 | werner | 189 | // soil water model - this determines soil water contents needed for response calculations |
190 | { |
||
191 | DebugTimer tw("water:run"); |
||
192 | mWater->run(); |
||
193 | } |
||
112 | Werner | 194 | |
195 | // invoke species specific calculation (3PG) |
||
196 | for (i=mRUSpecies.begin(); i!=iend; ++i) { |
||
229 | werner | 197 | i->calculate(); |
431 | werner | 198 | if (logLevelInfo() && i->LAIfactor()>0) |
376 | werner | 199 | qDebug() << "ru" << mIndex << "species" << (*i).species()->id() << "LAIfraction" << i->LAIfactor() << "raw_gpp_m2" |
200 | << i->prod3PG().GPPperArea() << "area:" << productiveArea() << "gpp:" |
||
201 | << productiveArea()*i->prod3PG().GPPperArea() |
||
436 | werner | 202 | << "aging(lastyear):" << averageAging() << "f_env,yr:" << i->prod3PG().fEnvYear(); |
112 | Werner | 203 | } |
110 | Werner | 204 | } |
205 | |||
251 | werner | 206 | void ResourceUnit::calculateInterceptedArea() |
207 | { |
||
265 | werner | 208 | if (mAggregatedLR==0) { |
209 | mEffectiveArea_perWLA = 0.; |
||
210 | return; |
||
211 | } |
||
251 | werner | 212 | Q_ASSERT(mAggregatedLR>0.); |
213 | mEffectiveArea_perWLA = mEffectiveArea / mAggregatedLR; |
||
431 | werner | 214 | if (logLevelDebug()) qDebug() << "RU: aggregated lightresponse:" << mAggregatedLR << "eff.area./wla:" << mEffectiveArea_perWLA; |
251 | werner | 215 | } |
216 | |||
376 | werner | 217 | // function is called immediately before the growth of individuals |
218 | void ResourceUnit::beforeGrow() |
||
219 | { |
||
220 | mAverageAging = 0.; |
||
221 | } |
||
222 | |||
223 | // function is called after finishing the indivdual growth / mortality. |
||
224 | void ResourceUnit::afterGrow() |
||
225 | { |
||
226 | mAverageAging = leafArea()>0.?mAverageAging/leafArea():0; // calculate aging value (calls to addAverageAging() by individual trees) |
||
227 | if (mAverageAging>0. && mAverageAging<0.00001) |
||
228 | qDebug() << "ru" << mIndex << "aging <0.00001"; |
||
229 | } |
||
230 | |||
189 | iland | 231 | void ResourceUnit::yearEnd() |
180 | werner | 232 | { |
233 | // calculate statistics for all tree species of the ressource unit |
||
234 | int c = mRUSpecies.count(); |
||
235 | for (int i=0;i<c; i++) { |
||
277 | werner | 236 | mRUSpecies[i].statisticsDead().calculate(); // calculate the dead trees |
278 | werner | 237 | mRUSpecies[i].statisticsMgmt().calculate(); // stats of removed trees |
238 | mRUSpecies[i].updateGWL(); // get sum of dead trees (died + removed) |
||
277 | werner | 239 | mRUSpecies[i].statistics().calculate(); // calculate the living (and add removed volume to gwl) |
180 | werner | 240 | mStatistics.add(mRUSpecies[i].statistics()); |
241 | } |
||
242 | mStatistics.calculate(); // aggreagte on stand level |
||
243 | } |
||
244 | |||
241 | werner | 245 | /// refresh of tree based statistics. |
240 | werner | 246 | void ResourceUnit::createStandStatistics() |
247 | { |
||
241 | werner | 248 | // clear statistics (ru-level and ru-species level) |
240 | werner | 249 | mStatistics.clear(); |
262 | werner | 250 | for (int i=0;i<mRUSpecies.count();i++) { |
240 | werner | 251 | mRUSpecies[i].statistics().clear(); |
262 | werner | 252 | mRUSpecies[i].statisticsDead().clear(); |
278 | werner | 253 | mRUSpecies[i].statisticsMgmt().clear(); |
262 | werner | 254 | } |
241 | werner | 255 | |
256 | // add all trees to the statistics objects of the species |
||
240 | werner | 257 | foreach(const Tree &t, mTrees) { |
258 | if (!t.isDead()) |
||
257 | werner | 259 | resourceUnitSpecies(t.species()).statistics().add(&t, 0); |
240 | werner | 260 | } |
241 | werner | 261 | // summarize statistics for the whole resource unit |
240 | werner | 262 | for (int i=0;i<mRUSpecies.count();i++) { |
263 | mRUSpecies[i].statistics().calculate(); |
||
264 | mStatistics.add(mRUSpecies[i].statistics()); |
||
265 | } |
||
331 | werner | 266 | mStatistics.calculate(); |
376 | werner | 267 | mAverageAging = mStatistics.leafAreaIndex()>0.?mAverageAging / (mStatistics.leafAreaIndex()*area()):0.; |
240 | werner | 268 | } |
452 | werner | 269 | |
270 | void ResourceUnit::setSaplingHeightAt(const QPoint &position, const float height) |
||
271 | { |
||
272 | Q_ASSERT(mSaplingHeightMap); |
||
273 | int pixel_index = cPxPerRU*(position.x()-mCornerCoord.x())+(position.y()-mCornerCoord.y()); |
||
274 | if (pixel_index<0 || pixel_index>=cPxPerRU*cPxPerRU) |
||
453 | werner | 275 | qDebug() << "setSaplingHeightAt-Error for position" << position << "for RU at" << boundingBox() << "with corner" << mCornerCoord; |
452 | werner | 276 | else |
277 | mSaplingHeightMap[pixel_index]=height; |
||
278 | } |
||
279 | |||
454 | werner | 280 | /// clear all saplings of all species on a given position (after recruitment) |
281 | void ResourceUnit::clearSaplings(const QPoint &position) |
||
282 | { |
||
283 | for (QVector<ResourceUnitSpecies>::const_iterator i=mRUSpecies.constBegin(); i!=mRUSpecies.constEnd(); ++i) |
||
284 | i->clearSaplings(position); |
||
285 | |||
286 | } |
||
287 |