Subversion Repositories public iLand

Rev

Rev 1196 | Rev 1203 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1
 
671 werner 2
/********************************************************************************************
3
**    iLand - an individual based forest landscape and disturbance model
4
**    http://iland.boku.ac.at
5
**    Copyright (C) 2009-  Werner Rammer, Rupert Seidl
6
**
7
**    This program is free software: you can redistribute it and/or modify
8
**    it under the terms of the GNU General Public License as published by
9
**    the Free Software Foundation, either version 3 of the License, or
10
**    (at your option) any later version.
11
**
12
**    This program is distributed in the hope that it will be useful,
13
**    but WITHOUT ANY WARRANTY; without even the implied warranty of
14
**    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
**    GNU General Public License for more details.
16
**
17
**    You should have received a copy of the GNU General Public License
18
**    along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
********************************************************************************************/
20
 
534 werner 21
/** @class ResourceUnit
22
  ResourceUnit is the spatial unit that encapsulates a forest stand and links to several environmental components
23
  (Climate, Soil, Water, ...).
697 werner 24
  @ingroup core
25
  A resource unit has a size of (currently) 100x100m. Many processes in iLand operate on the level of a ResourceUnit.
26
  Each resource unit has the same Climate and other properties (e.g. available nitrogen).
27
  Proceses on this level are, inter alia, NPP Production (see Production3PG), water calculations (WaterCycle), the modeling
28
  of dead trees (Snag) and soil processes (Soil).
534 werner 29
 
30
  */
31
#include <QtCore>
32
#include "global.h"
33
 
34
#include "resourceunit.h"
35
#include "resourceunitspecies.h"
36
#include "speciesset.h"
37
#include "species.h"
38
#include "production3pg.h"
39
#include "model.h"
40
#include "climate.h"
41
#include "watercycle.h"
42
#include "snag.h"
43
#include "soil.h"
44
#include "helper.h"
45
 
46
ResourceUnit::~ResourceUnit()
47
{
48
    if (mWater)
49
        delete mWater;
50
    mWater = 0;
51
    if (mSnag)
52
        delete mSnag;
53
    if (mSoil)
54
        delete mSoil;
55
 
738 werner 56
    qDeleteAll(mRUSpecies);
57
 
1159 werner 58
    if (mSaplings)
59
        delete[] mSaplings;
60
 
534 werner 61
    mSnag = 0;
62
    mSoil = 0;
1159 werner 63
    mSaplings = 0;
534 werner 64
}
65
 
66
ResourceUnit::ResourceUnit(const int index)
67
{
68
    qDeleteAll(mRUSpecies);
69
    mSpeciesSet = 0;
70
    mClimate = 0;
71
    mPixelCount=0;
72
    mStockedArea = 0;
73
    mStockedPixelCount = 0;
1157 werner 74
    mStockableArea = 0;
1024 werner 75
    mAggregatedWLA = 0.;
76
    mAggregatedLA = 0.;
77
    mAggregatedLR = 0.;
78
    mEffectiveArea = 0.;
79
    mLRI_modification = 0.;
534 werner 80
    mIndex = index;
81
    mSaplingHeightMap = 0;
82
    mEffectiveArea_perWLA = 0.;
83
    mWater = new WaterCycle();
84
    mSnag = 0;
85
    mSoil = 0;
1159 werner 86
    mSaplings = 0;
569 werner 87
    mID = 0;
534 werner 88
}
89
 
90
void ResourceUnit::setup()
91
{
92
    mWater->setup(this);
93
 
94
    if (mSnag)
95
        delete mSnag;
96
    mSnag=0;
97
    if (mSoil)
98
        delete mSoil;
99
    mSoil=0;
100
    if (Model::settings().carbonCycleEnabled) {
591 werner 101
        mSoil = new Soil(this);
534 werner 102
        mSnag = new Snag;
103
        mSnag->setup(this);
104
        const XmlHelper &xml=GlobalSettings::instance()->settings();
105
 
106
        // setup contents of the soil of the RU; use values for C and N (kg/ha)
107
        mSoil->setInitialState(CNPool(xml.valueDouble("model.site.youngLabileC", -1),
108
                                      xml.valueDouble("model.site.youngLabileN", -1),
109
                                      xml.valueDouble("model.site.youngLabileDecompRate", -1)),
110
                               CNPool(xml.valueDouble("model.site.youngRefractoryC", -1),
111
                                      xml.valueDouble("model.site.youngRefractoryN", -1),
112
                                      xml.valueDouble("model.site.youngRefractoryDecompRate", -1)),
113
                               CNPair(xml.valueDouble("model.site.somC", -1), xml.valueDouble("model.site.somN", -1)));
114
    }
115
 
1159 werner 116
    if (mSaplings)
117
        delete mSaplings;
118
    if (Model::settings().regenerationEnabled) {
119
        mSaplings = new SaplingCell[cPxPerHectare];
120
    }
121
 
534 werner 122
    // setup variables
123
    mUnitVariables.nitrogenAvailable = GlobalSettings::instance()->settings().valueDouble("model.site.availableNitrogen", 40);
124
 
895 werner 125
    // if dynamic coupling of soil nitrogen is enabled, a starting value for available N is calculated
534 werner 126
    if (mSoil && Model::settings().useDynamicAvailableNitrogen && Model::settings().carbonCycleEnabled) {
127
        mSoil->setClimateFactor(1.);
128
        mSoil->calculateYear();
895 werner 129
        mUnitVariables.nitrogenAvailable = soil()->availableNitrogen();
534 werner 130
    }
664 werner 131
    mHasDeadTrees = false;
534 werner 132
    mAverageAging = 0.;
133
 
134
}
135
void ResourceUnit::setBoundingBox(const QRectF &bb)
136
{
137
    mBoundingBox = bb;
1118 werner 138
    mCornerOffset = GlobalSettings::instance()->model()->grid()->indexAt(bb.topLeft());
534 werner 139
}
140
 
141
/// set species and setup the species-per-RU-data
142
void ResourceUnit::setSpeciesSet(SpeciesSet *set)
143
{
144
    mSpeciesSet = set;
145
    qDeleteAll(mRUSpecies);
146
 
147
    //mRUSpecies.resize(set->count()); // ensure that the vector space is not relocated
148
    for (int i=0;i<set->count();i++) {
149
        Species *s = const_cast<Species*>(mSpeciesSet->species(i));
150
        if (!s)
151
            throw IException("ResourceUnit::setSpeciesSet: invalid index!");
152
 
153
        ResourceUnitSpecies *rus = new ResourceUnitSpecies();
154
        mRUSpecies.push_back(rus);
155
        rus->setup(s, this);
156
        /* be careful: setup() is called with a pointer somewhere to the content of the mRUSpecies container.
157
           If the container memory is relocated (QVector), the pointer gets invalid!!!
158
           Therefore, a resize() is called before the loop (no resize()-operations during the loop)! */
159
        //mRUSpecies[i].setup(s,this); // setup this element
160
 
161
    }
162
}
163
 
164
ResourceUnitSpecies &ResourceUnit::resourceUnitSpecies(const Species *species)
165
{
166
    return *mRUSpecies[species->index()];
167
}
168
 
1040 werner 169
const ResourceUnitSpecies *ResourceUnit::constResourceUnitSpecies(const Species *species) const
170
{
171
    return mRUSpecies[species->index()];
172
}
173
 
534 werner 174
Tree &ResourceUnit::newTree()
175
{
176
    // start simple: just append to the vector...
177
    if (mTrees.isEmpty())
178
        mTrees.reserve(100); // reserve a junk of memory for trees
179
 
180
    mTrees.append(Tree());
181
    return mTrees.back();
182
}
183
int ResourceUnit::newTreeIndex()
184
{
734 werner 185
    newTree();
186
    return mTrees.count()-1; // return index of the last tree
534 werner 187
}
188
 
189
/// remove dead trees from tree list
190
/// reduce size of vector if lots of space is free
191
/// tests showed that this way of cleanup is very fast,
192
/// because no memory allocations are performed (simple memmove())
193
/// when trees are moved.
194
void ResourceUnit::cleanTreeList()
195
{
664 werner 196
    if (!mHasDeadTrees)
197
        return;
198
 
534 werner 199
    QVector<Tree>::iterator last=mTrees.end()-1;
200
    QVector<Tree>::iterator current = mTrees.begin();
201
    while (last>=current && (*last).isDead())
202
        --last;
203
 
204
    while (current<last) {
205
        if ((*current).isDead()) {
206
            *current = *last; // copy data!
207
            --last; //
208
            while (last>=current && (*last).isDead())
209
                --last;
210
        }
211
        ++current;
212
    }
213
    ++last; // last points now to the first dead tree
214
 
215
    // free ressources
216
    if (last!=mTrees.end()) {
217
        mTrees.erase(last, mTrees.end());
218
        if (mTrees.capacity()>100) {
219
            if (mTrees.count() / double(mTrees.capacity()) < 0.2) {
220
                //int target_size = mTrees.count()*2;
221
                //qDebug() << "reduce size from "<<mTrees.capacity() << "to" << target_size;
222
                //mTrees.reserve(qMax(target_size, 100));
664 werner 223
                if (logLevelDebug())
224
                    qDebug() << "reduce tree storage of RU" << index() << " from " << mTrees.capacity() << "to" << mTrees.count();
534 werner 225
                mTrees.squeeze();
226
            }
227
        }
228
    }
664 werner 229
    mHasDeadTrees = false; // reset flag
534 werner 230
}
231
 
232
void ResourceUnit::newYear()
233
{
234
    mAggregatedWLA = 0.;
235
    mAggregatedLA = 0.;
236
    mAggregatedLR = 0.;
237
    mEffectiveArea = 0.;
238
    mPixelCount = mStockedPixelCount = 0;
239
    snagNewYear();
609 werner 240
    if (mSoil)
241
        mSoil->newYear();
534 werner 242
    // clear statistics global and per species...
243
    QList<ResourceUnitSpecies*>::const_iterator i;
244
    QList<ResourceUnitSpecies*>::const_iterator iend = mRUSpecies.constEnd();
245
    mStatistics.clear();
246
    for (i=mRUSpecies.constBegin(); i!=iend; ++i) {
247
        (*i)->statisticsDead().clear();
248
        (*i)->statisticsMgmt().clear();
249
    }
250
 
251
}
252
 
253
/** production() is the "stand-level" part of the biomass production (3PG).
254
    - The amount of radiation intercepted by the stand is calculated
255
    - the water cycle is calculated
256
    - statistics for each species are cleared
257
    - The 3PG production for each species and ressource unit is called (calculates species-responses and NPP production)
258
    see also: http://iland.boku.ac.at/individual+tree+light+availability */
259
void ResourceUnit::production()
260
{
261
 
1107 werner 262
    if (mAggregatedWLA==0. || mPixelCount==0) {
936 werner 263
        // clear statistics of resourceunitspecies
264
        for ( QList<ResourceUnitSpecies*>::const_iterator i=mRUSpecies.constBegin(); i!=mRUSpecies.constEnd(); ++i)
265
            (*i)->statistics().clear();
266
        mEffectiveArea = 0.;
267
        mStockedArea = 0.;
534 werner 268
        return;
269
    }
270
 
271
    // the pixel counters are filled during the height-grid-calculations
1184 werner 272
    mStockedArea = cHeightPerRU*cHeightPerRU * mStockedPixelCount; // m2 (1 height grid pixel = 10x10m)
1107 werner 273
    if (leafAreaIndex()<3.) {
274
        // estimate stocked area based on crown projections
275
        double crown_area = 0.;
276
        for (int i=0;i<mTrees.count();++i)
277
            crown_area += mTrees.at(i).isDead() ? 0. : mTrees.at(i).stamp()->reader()->crownArea();
534 werner 278
 
1157 werner 279
        if (logLevelDebug())
280
            qDebug() << "crown area: lai" << leafAreaIndex() << "stocked area (pixels)" << mStockedArea << " area (crown)" << crown_area;
281
        if (leafAreaIndex()<1.) {
282
            mStockedArea = std::min(crown_area, mStockedArea);
1107 werner 283
        } else {
1184 werner 284
            // for LAI between 1 and 3:
285
            // interpolate between sum of crown area of trees (at LAI=1) and the pixel-based value (at LAI=3 and above)
1157 werner 286
            double px_frac = (leafAreaIndex()-1.)/2.; // 0 at LAI=1, 1 at LAI=3
287
            mStockedArea = mStockedArea * px_frac + std::min(crown_area, mStockedArea) * (1. - px_frac);
1107 werner 288
        }
289
        if (mStockedArea==0.)
290
            return;
291
    }
292
 
534 werner 293
    // calculate the leaf area index (LAI)
294
    double LAI = mAggregatedLA / mStockedArea;
295
    // calculate the intercepted radiation fraction using the law of Beer Lambert
296
    const double k = Model::settings().lightExtinctionCoefficient;
297
    double interception_fraction = 1. - exp(-k * LAI);
298
    mEffectiveArea = mStockedArea * interception_fraction; // m2
299
 
300
    // calculate the total weighted leaf area on this RU:
301
    mLRI_modification = interception_fraction *  mStockedArea / mAggregatedWLA; // p_WLA
302
    if (mLRI_modification == 0.)
303
        qDebug() << "lri modifaction==0!";
304
 
611 werner 305
    if (logLevelDebug()) {
534 werner 306
    DBGMODE(qDebug() << QString("production: LAI: %1 (intercepted fraction: %2, stocked area: %4). LRI-Multiplier: %3")
307
            .arg(LAI)
308
            .arg(interception_fraction)
309
            .arg(mLRI_modification)
310
            .arg(mStockedArea);
311
    );
611 werner 312
    }
534 werner 313
 
314
    // calculate LAI fractions
315
    QList<ResourceUnitSpecies*>::const_iterator i;
316
    QList<ResourceUnitSpecies*>::const_iterator iend = mRUSpecies.constEnd();
317
    double ru_lai = leafAreaIndex();
318
    if (ru_lai < 1.)
319
        ru_lai = 1.;
320
    // note: LAIFactors are only 1 if sum of LAI is > 1. (see WaterCycle)
321
    for (i=mRUSpecies.constBegin(); i!=iend; ++i) {
720 werner 322
        double lai_factor = (*i)->statistics().leafAreaIndex() / ru_lai;
1157 werner 323
 
324
        //DBGMODE(
325
        if (lai_factor > 1.) {
326
                        const ResourceUnitSpecies* rus=*i;
327
                        qDebug() << "LAI factor > 1: species ru-index:" << rus->species()->name() << rus->ru()->index();
328
                    }
329
        //);
720 werner 330
        (*i)->setLAIfactor( lai_factor );
534 werner 331
    }
332
 
333
    // soil water model - this determines soil water contents needed for response calculations
334
    {
335
    mWater->run();
336
    }
337
 
338
    // invoke species specific calculation (3PG)
339
    for (i=mRUSpecies.constBegin(); i!=iend; ++i) {
1157 werner 340
        //DBGMODE(
341
        if ((*i)->LAIfactor() > 1.) {
342
                    const ResourceUnitSpecies* rus=*i;
343
                    qDebug() << "LAI factor > 1: species ru-index value:" << rus->species()->name() << rus->ru()->index() << rus->LAIfactor();
344
                    }
345
        //);
534 werner 346
        (*i)->calculate(); // CALCULATE 3PG
1196 werner 347
 
348
        // debug output related to production
349
        if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dStandGPP) && (*i)->LAIfactor()>0.) {
350
            DebugList &out = GlobalSettings::instance()->debugList(index(), GlobalSettings::dStandGPP);
351
            out << (*i)->species()->id() << index() << id();
352
            out << (*i)->LAIfactor() << (*i)->prod3PG().GPPperArea() << productiveArea()*(*i)->LAIfactor()*(*i)->prod3PG().GPPperArea() << averageAging() << (*i)->prod3PG().fEnvYear() ;
353
 
354
        }
534 werner 355
    }
356
}
357
 
358
void ResourceUnit::calculateInterceptedArea()
359
{
360
    if (mAggregatedLR==0) {
361
        mEffectiveArea_perWLA = 0.;
362
        return;
363
    }
364
    Q_ASSERT(mAggregatedLR>0.);
365
    mEffectiveArea_perWLA = mEffectiveArea / mAggregatedLR;
366
    if (logLevelDebug()) qDebug() << "RU: aggregated lightresponse:" << mAggregatedLR  << "eff.area./wla:" << mEffectiveArea_perWLA;
367
}
368
 
369
// function is called immediately before the growth of individuals
370
void ResourceUnit::beforeGrow()
371
{
372
    mAverageAging = 0.;
373
}
374
 
375
// function is called after finishing the indivdual growth / mortality.
376
void ResourceUnit::afterGrow()
377
{
378
    mAverageAging = leafArea()>0.?mAverageAging/leafArea():0; // calculate aging value (calls to addAverageAging() by individual trees)
379
    if (mAverageAging>0. && mAverageAging<0.00001)
380
        qDebug() << "ru" << mIndex << "aging <0.00001";
381
    if (mAverageAging<0. || mAverageAging>1.)
382
        qDebug() << "Average aging invalid: (RU, LAI):" << index() << mStatistics.leafAreaIndex();
383
}
384
 
385
void ResourceUnit::yearEnd()
386
{
387
    // calculate statistics for all tree species of the ressource unit
388
    int c = mRUSpecies.count();
389
    for (int i=0;i<c; i++) {
390
        mRUSpecies[i]->statisticsDead().calculate(); // calculate the dead trees
391
        mRUSpecies[i]->statisticsMgmt().calculate(); // stats of removed trees
392
        mRUSpecies[i]->updateGWL(); // get sum of dead trees (died + removed)
393
        mRUSpecies[i]->statistics().calculate(); // calculate the living (and add removed volume to gwl)
394
        mStatistics.add(mRUSpecies[i]->statistics());
395
    }
396
    mStatistics.calculate(); // aggreagte on stand level
397
 
1157 werner 398
    // update carbon flows
399
    if (soil() && GlobalSettings::instance()->model()->settings().carbonCycleEnabled) {
400
        double area_factor = stockableArea() / cRUArea; //conversion factor
401
        mUnitVariables.carbonUptake = statistics().npp() * biomassCFraction;
402
        mUnitVariables.carbonUptake += statistics().nppSaplings() * biomassCFraction;
403
 
404
        double to_atm = snag()->fluxToAtmosphere().C / area_factor; // from snags, kgC/ha
405
        to_atm += soil()->fluxToAtmosphere().C *cRUArea/10.; // soil: t/ha -> t/m2 -> kg/ha
406
        mUnitVariables.carbonToAtm = to_atm;
407
 
408
        double to_dist = snag()->fluxToDisturbance().C / area_factor;
409
        to_dist += soil()->fluxToDisturbance().C * cRUArea/10.;
410
        double to_harvest = snag()->fluxToExtern().C / area_factor;
411
 
412
        mUnitVariables.NEP = mUnitVariables.carbonUptake - to_atm - to_dist - to_harvest; // kgC/ha
413
 
414
        // incremental values....
415
        mUnitVariables.cumCarbonUptake += mUnitVariables.carbonUptake;
416
        mUnitVariables.cumCarbonToAtm += mUnitVariables.carbonToAtm;
417
        mUnitVariables.cumNEP += mUnitVariables.NEP;
418
 
419
    }
420
 
534 werner 421
}
422
 
423
void ResourceUnit::addTreeAgingForAllTrees()
424
{
425
    mAverageAging = 0.;
426
    foreach(const Tree &t, mTrees) {
427
        addTreeAging(t.leafArea(), t.species()->aging(t.height(), t.age()));
428
    }
429
 
430
}
431
 
432
/// refresh of tree based statistics.
433
/// WARNING: this function is only called once (during startup).
434
/// see function "yearEnd()" above!!!
435
void ResourceUnit::createStandStatistics()
436
{
437
    // clear statistics (ru-level and ru-species level)
438
    mStatistics.clear();
439
    for (int i=0;i<mRUSpecies.count();i++) {
440
        mRUSpecies[i]->statistics().clear();
441
        mRUSpecies[i]->statisticsDead().clear();
442
        mRUSpecies[i]->statisticsMgmt().clear();
1178 werner 443
        mRUSpecies[i]->saplingStat().clearStatistics();
534 werner 444
    }
445
 
446
    // add all trees to the statistics objects of the species
447
    foreach(const Tree &t, mTrees) {
448
        if (!t.isDead())
449
            resourceUnitSpecies(t.species()).statistics().add(&t, 0);
450
    }
1178 werner 451
    // summarise sapling stats
452
    GlobalSettings::instance()->model()->saplings()->calculateInitialStatistics(this);
453
 
534 werner 454
    // summarize statistics for the whole resource unit
455
    for (int i=0;i<mRUSpecies.count();i++) {
1178 werner 456
        mRUSpecies[i]->saplingStat().calculate(mRUSpecies[i]->species(), this);
457
        mRUSpecies[i]->statistics().add(&mRUSpecies[i]->saplingStat());
534 werner 458
        mRUSpecies[i]->statistics().calculate();
459
        mStatistics.add(mRUSpecies[i]->statistics());
460
    }
461
    mStatistics.calculate();
575 werner 462
    mAverageAging = mStatistics.leafAreaIndex()>0.?mAverageAging / (mStatistics.leafAreaIndex()*stockableArea()):0.;
534 werner 463
    if (mAverageAging<0. || mAverageAging>1.)
464
        qDebug() << "Average aging invalid: (RU, LAI):" << index() << mStatistics.leafAreaIndex();
1178 werner 465
 
534 werner 466
}
467
 
720 werner 468
/** recreate statistics. This is necessary after events that changed the structure
469
    of the stand *after* the growth of trees (where stand statistics are updated).
470
    An example is after disturbances.  */
1157 werner 471
void ResourceUnit::recreateStandStatistics(bool recalculate_stats)
720 werner 472
{
1202 werner 473
    // when called after disturbances (recalculate_stats=false), we
474
    // clear only the tree-specific variables in the stats (i.e. we keep NPP, and regen carbon),
475
    // and then re-add all trees (since TreeGrowthData is NULL no NPP is available).
476
    // The statistics are not summarised here, because this happens for all resource units
477
    // in the yearEnd function of RU.
720 werner 478
    for (int i=0;i<mRUSpecies.count();i++) {
1202 werner 479
        if (recalculate_stats)
480
            mRUSpecies[i]->statistics().clear();
481
        else
482
            mRUSpecies[i]->statistics().clearOnlyTrees();
720 werner 483
    }
484
    foreach(const Tree &t, mTrees) {
485
        resourceUnitSpecies(t.species()).statistics().add(&t, 0);
486
    }
1157 werner 487
 
488
    if (recalculate_stats) {
489
        for (int i=0;i<mRUSpecies.count();i++) {
490
            mRUSpecies[i]->statistics().calculate();
491
        }
937 werner 492
    }
720 werner 493
}
494
 
824 werner 495
 
534 werner 496
 
497
 
498
void ResourceUnit::calculateCarbonCycle()
499
{
500
    if (!snag())
501
        return;
502
 
503
    // (1) calculate the snag dynamics
504
    // because all carbon/nitrogen-flows from trees to the soil are routed through the snag-layer,
505
    // all soil inputs (litter + deadwood) are collected in the Snag-object.
506
    snag()->calculateYear();
507
    soil()->setClimateFactor( snag()->climateFactor() ); // the climate factor is only calculated once
508
    soil()->setSoilInput( snag()->labileFlux(), snag()->refractoryFlux());
509
    soil()->calculateYear(); // update the ICBM/2N model
510
    // use available nitrogen?
511
    if (Model::settings().useDynamicAvailableNitrogen)
512
        mUnitVariables.nitrogenAvailable = soil()->availableNitrogen();
513
 
514
    // debug output
515
    if (GlobalSettings::instance()->isDebugEnabled(GlobalSettings::dCarbonCycle) && !snag()->isEmpty()) {
516
        DebugList &out = GlobalSettings::instance()->debugList(index(), GlobalSettings::dCarbonCycle);
605 werner 517
        out << index() << id(); // resource unit index and id
534 werner 518
        out << snag()->debugList(); // snag debug outs
519
        out << soil()->debugList(); // ICBM/2N debug outs
520
    }
521
 
522
}
600 werner 523
 
524