Subversion Repositories public iLand

Rev

Rev 1221 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1
 
671 werner 2
/********************************************************************************************
3
**    iLand - an individual based forest landscape and disturbance model
4
**    http://iland.boku.ac.at
5
**    Copyright (C) 2009-  Werner Rammer, Rupert Seidl
6
**
7
**    This program is free software: you can redistribute it and/or modify
8
**    it under the terms of the GNU General Public License as published by
9
**    the Free Software Foundation, either version 3 of the License, or
10
**    (at your option) any later version.
11
**
12
**    This program is distributed in the hope that it will be useful,
13
**    but WITHOUT ANY WARRANTY; without even the implied warranty of
14
**    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
**    GNU General Public License for more details.
16
**
17
**    You should have received a copy of the GNU General Public License
18
**    along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
********************************************************************************************/
20
 
468 werner 21
#include "snag.h"
22
#include "tree.h"
23
#include "species.h"
24
#include "globalsettings.h"
25
#include "expression.h"
490 werner 26
// for calculation of climate decomposition
27
#include "resourceunit.h"
28
#include "watercycle.h"
29
#include "climate.h"
541 werner 30
#include "model.h"
468 werner 31
 
32
/** @class Snag
697 werner 33
  @ingroup core
468 werner 34
  Snag deals with carbon / nitrogen fluxes from the forest until the reach soil pools.
490 werner 35
  Snag lives on the level of the ResourceUnit; carbon fluxes from trees enter Snag, and parts of the biomass of snags
468 werner 36
  is subsequently forwarded to the soil sub model.
522 werner 37
  Carbon is stored in three classes (depending on the size)
528 werner 38
  The Snag dynamics class uses the following species parameter:
39
  cnFoliage, cnFineroot, cnWood, snagHalflife, snagKSW
468 werner 40
 
41
  */
42
// static variables
528 werner 43
double Snag::mDBHLower = -1.;
522 werner 44
double Snag::mDBHHigher = 0.;
45
double Snag::mCarbonThreshold[] = {0., 0., 0.};
46
 
534 werner 47
double CNPair::biomassCFraction = biomassCFraction; // get global from globalsettings.h
468 werner 48
 
534 werner 49
/// add biomass and weigh the parameter_value with the current C-content of the pool
50
void CNPool::addBiomass(const double biomass, const double CNratio, const double parameter_value)
51
{
52
    if (biomass==0.)
53
        return;
54
    double new_c = biomass*biomassCFraction;
55
    double p_old = C / (new_c + C);
56
    mParameter = mParameter*p_old + parameter_value*(1.-p_old);
57
    CNPair::addBiomass(biomass, CNratio);
58
}
59
 
60
// increase pool (and weigh the value)
61
void CNPool::operator+=(const CNPool &s)
62
{
63
    if (s.C==0.)
64
        return;
65
    mParameter = parameter(s); // calculate weighted parameter
66
    C+=s.C;
67
    N+=s.N;
68
}
69
 
70
double CNPool::parameter(const CNPool &s) const
71
{
72
    if (s.C==0.)
73
        return parameter();
74
    double p_old = C / (s.C + C);
75
    double result =  mParameter*p_old + s.parameter()*(1.-p_old);
76
    return result;
77
}
78
 
79
 
522 werner 80
void Snag::setupThresholds(const double lower, const double upper)
81
{
82
    if (mDBHLower == lower)
83
        return;
84
    mDBHLower = lower;
85
    mDBHHigher = upper;
86
    mCarbonThreshold[0] = lower / 2.;
87
    mCarbonThreshold[1] = lower + (upper - lower)/2.;
88
    mCarbonThreshold[2] = upper + (upper - lower)/2.;
89
    //# threshold levels for emptying out the dbh-snag-classes
90
    //# derived from Psme woody allometry, converted to C, with a threshold level set to 10%
91
    //# values in kg!
92
    for (int i=0;i<3;i++)
93
        mCarbonThreshold[i] = 0.10568*pow(mCarbonThreshold[i],2.4247)*0.5*0.1;
94
}
95
 
96
 
468 werner 97
Snag::Snag()
98
{
490 werner 99
    mRU = 0;
534 werner 100
    CNPair::setCFraction(biomassCFraction);
468 werner 101
}
102
 
490 werner 103
void Snag::setup( const ResourceUnit *ru)
468 werner 104
{
490 werner 105
    mRU = ru;
106
    mClimateFactor = 0.;
468 werner 107
    // branches
108
    mBranchCounter=0;
109
    for (int i=0;i<3;i++) {
110
        mTimeSinceDeath[i] = 0.;
111
        mNumberOfSnags[i] = 0.;
522 werner 112
        mAvgDbh[i] = 0.;
113
        mAvgHeight[i] = 0.;
114
        mAvgVolume[i] = 0.;
115
        mKSW[i] = 0.;
116
        mCurrentKSW[i] = 0.;
557 werner 117
        mHalfLife[i] = 0.;
468 werner 118
    }
475 werner 119
    mTotalSnagCarbon = 0.;
528 werner 120
    if (mDBHLower<=0)
121
        throw IException("Snag::setupThresholds() not called or called with invalid parameters.");
557 werner 122
 
123
    // Inital values from XML file
124
    XmlHelper xml=GlobalSettings::instance()->settings();
574 werner 125
    double kyr = xml.valueDouble("model.site.youngRefractoryDecompRate", -1);
557 werner 126
    // put carbon of snags to the middle size class
127
    xml.setCurrentNode("model.initialization.snags");
128
    mSWD[1].C = xml.valueDouble(".swdC");
129
    mSWD[1].N = mSWD[1].C / xml.valueDouble(".swdCN", 50.);
130
    mSWD[1].setParameter(kyr);
131
    mKSW[1] = xml.valueDouble(".swdDecompRate");
132
    mNumberOfSnags[1] = xml.valueDouble(".swdCount");
133
    mHalfLife[1] = xml.valueDouble(".swdHalfLife");
134
    // and for the Branch/coarse root pools: split the init value into five chunks
135
    CNPool other(xml.valueDouble(".otherC"), xml.valueDouble(".otherC")/xml.valueDouble(".otherCN", 50.), kyr );
136
 
137
    mTotalSnagCarbon = other.C + mSWD[1].C;
138
 
139
    other *= 0.2;
140
    for (int i=0;i<5;i++)
141
        mOtherWood[i] = other;
468 werner 142
}
143
 
1157 werner 144
void Snag::scaleInitialState()
145
{
146
    double area_factor = mRU->stockableArea() / cRUArea; // fraction stockable area
147
    // avoid huge snag pools on very small resource units (see also soil.cpp)
148
    // area_factor = std::max(area_factor, 0.1);
149
    mSWD[1] *= area_factor;
150
    mNumberOfSnags[1] *= area_factor;
151
    for (int i=0;i<5;i++)
152
        mOtherWood[i]*= area_factor;
153
    mTotalSnagCarbon *= area_factor;
154
 
155
}
156
 
475 werner 157
// debug outputs
158
QList<QVariant> Snag::debugList()
159
{
160
    // list columns
161
    // for three pools
162
    QList<QVariant> list;
163
 
523 werner 164
    // totals
165
    list << mTotalSnagCarbon << mTotalIn.C << mTotalToAtm.C << mSWDtoSoil.C << mSWDtoSoil.N;
477 werner 166
    // fluxes to labile soil pool and to refractory soil pool
524 werner 167
    list << mLabileFlux.C << mLabileFlux.N << mRefractoryFlux.C << mRefractoryFlux.N;
475 werner 168
 
169
    for (int i=0;i<3;i++) {
170
        // pools "swdx_c", "swdx_n", "swdx_count", "swdx_tsd", "toswdx_c", "toswdx_n"
171
        list << mSWD[i].C << mSWD[i].N << mNumberOfSnags[i] << mTimeSinceDeath[i] << mToSWD[i].C << mToSWD[i].N;
524 werner 172
        list << mAvgDbh[i] << mAvgHeight[i] << mAvgVolume[i];
475 werner 173
    }
174
 
540 werner 175
    // branch/coarse wood pools (5 yrs)
176
    for (int i=0;i<5;i++) {
177
        list << mOtherWood[i].C << mOtherWood[i].N;
178
    }
179
//    list << mOtherWood[mBranchCounter].C << mOtherWood[mBranchCounter].N
180
//            << mOtherWood[(mBranchCounter+1)%5].C << mOtherWood[(mBranchCounter+1)%5].N
181
//            << mOtherWood[(mBranchCounter+2)%5].C << mOtherWood[(mBranchCounter+2)%5].N
182
//            << mOtherWood[(mBranchCounter+3)%5].C << mOtherWood[(mBranchCounter+3)%5].N
183
//            << mOtherWood[(mBranchCounter+4)%5].C << mOtherWood[(mBranchCounter+4)%5].N;
475 werner 184
    return list;
185
}
186
 
713 werner 187
 
468 werner 188
void Snag::newYear()
189
{
190
    for (int i=0;i<3;i++) {
191
        mToSWD[i].clear(); // clear transfer pools to standing-woody-debris
522 werner 192
        mCurrentKSW[i] = 0.;
468 werner 193
    }
194
    mLabileFlux.clear();
195
    mRefractoryFlux.clear();
476 werner 196
    mTotalToAtm.clear();
197
    mTotalToExtern.clear();
609 werner 198
    mTotalToDisturbance.clear();
476 werner 199
    mTotalIn.clear();
477 werner 200
    mSWDtoSoil.clear();
468 werner 201
}
202
 
490 werner 203
/// calculate the dynamic climate modifier for decomposition 're'
522 werner 204
/// calculation is done on the level of ResourceUnit because the water content per day is needed.
490 werner 205
double Snag::calculateClimateFactors()
206
{
770 werner 207
    // the calculation of climate factors requires calculated evapotranspiration. In cases without vegetation (trees or saplings)
208
    // we have to trigger the water cycle calculation for ourselves [ the waterCycle checks if it has already been run in a year and doesn't run twice in that case ]
209
    const_cast<WaterCycle*>(mRU->waterCycle())->run();
490 werner 210
    double ft, fw;
211
    double f_sum = 0.;
552 werner 212
    int iday=0;
553 werner 213
    // calculate the water-factor for each month (see Adair et al 2008)
214
    double fw_month[12];
215
    double ratio;
216
    for (int m=0;m<12;m++) {
562 werner 217
        if (mRU->waterCycle()->referenceEvapotranspiration()[m]>0.)
218
            ratio = mRU->climate()->precipitationMonth()[m] /  mRU->waterCycle()->referenceEvapotranspiration()[m];
553 werner 219
        else
220
            ratio = 0;
221
        fw_month[m] = 1. / (1. + 30.*exp(-8.5*ratio));
564 werner 222
        if (logLevelDebug()) qDebug() <<"month"<< m << "PET" << mRU->waterCycle()->referenceEvapotranspiration()[m] << "prec" <<mRU->climate()->precipitationMonth()[m];
553 werner 223
    }
224
 
552 werner 225
    for (const ClimateDay *day=mRU->climate()->begin(); day!=mRU->climate()->end(); ++day, ++iday)
490 werner 226
    {
227
        ft = exp(308.56*(1./56.02-1./((273.+day->temperature)-227.13)));  // empirical variable Q10 model of Lloyd and Taylor (1994), see also Adair et al. (2008)
553 werner 228
        fw = fw_month[day->month-1];
540 werner 229
 
490 werner 230
        f_sum += ft*fw;
231
    }
232
    // the climate factor is defined as the arithmentic annual mean value
233
    mClimateFactor = f_sum / double(mRU->climate()->daysOfYear());
234
    return mClimateFactor;
235
}
236
 
522 werner 237
/// do the yearly calculation
238
/// see http://iland.boku.ac.at/snag+dynamics
526 werner 239
void Snag::calculateYear()
468 werner 240
{
522 werner 241
    mSWDtoSoil.clear();
925 werner 242
 
243
    // calculate anyway, because also the soil module needs it (and currently one can have Snag and Soil only as a couple)
244
    calculateClimateFactors();
245
    const double climate_factor_re = mClimateFactor;
246
 
477 werner 247
    if (isEmpty()) // nothing to do
475 werner 248
        return;
249
 
468 werner 250
    // process branches: every year one of the five baskets is emptied and transfered to the refractory soil pool
540 werner 251
    mRefractoryFlux+=mOtherWood[mBranchCounter];
252
    mOtherWood[mBranchCounter].clear();
468 werner 253
    mBranchCounter= (mBranchCounter+1) % 5; // increase index, roll over to 0.
1202 werner 254
 
540 werner 255
    // decay of branches/coarse roots
256
    for (int i=0;i<5;i++) {
257
        if (mOtherWood[i].C>0.) {
258
            double survive_rate = exp(- climate_factor_re * mOtherWood[i].parameter() ); // parameter: the "kyr" value...
1202 werner 259
            mTotalToAtm.C += mOtherWood[i].C * (1. - survive_rate); // flux to atmosphere (decayed carbon)
540 werner 260
            mOtherWood[i].C *= survive_rate;
261
        }
262
    }
468 werner 263
 
264
    // process standing snags.
265
    // the input of the current year is in the mToSWD-Pools
266
    for (int i=0;i<3;i++) {
267
 
522 werner 268
        // update the swd-pool with this years' input
269
        if (!mToSWD[i].isEmpty()) {
270
            // update decay rate (apply average yearly input to the state parameters)
271
            mKSW[i] = mKSW[i]*(mSWD[i].C/(mSWD[i].C+mToSWD[i].C)) + mCurrentKSW[i]*(mToSWD[i].C/(mSWD[i].C+mToSWD[i].C));
272
            //move content to the SWD pool
273
            mSWD[i] += mToSWD[i];
274
        }
475 werner 275
 
522 werner 276
        if (mSWD[i].C > 0) {
277
            // reduce the Carbon (note: the N stays, thus the CN ratio changes)
278
            // use the decay rate that is derived as a weighted average of all standing woody debris
523 werner 279
            double survive_rate = exp(-mKSW[i] *climate_factor_re * 1. ); // 1: timestep
280
            mTotalToAtm.C += mSWD[i].C * (1. - survive_rate);
281
            mSWD[i].C *= survive_rate;
468 werner 282
 
522 werner 283
            // transition to downed woody debris
284
            // update: use negative exponential decay, species parameter: half-life
285
            // modified for the climatic effect on decomposition, i.e. if decomp is slower, snags stand longer and vice versa
286
            // this is loosely oriented on Standcarb2 (http://andrewsforest.oregonstate.edu/pubs/webdocs/models/standcarb2.htm),
287
            // where lag times for cohort transitions are linearly modified with re although here individual good or bad years have
288
            // an immediate effect, the average climatic influence should come through (and it is inherently transient)
289
            // note that swd.hl is species-specific, and thus a weighted average over the species in the input (=mortality)
290
            // needs to be calculated, followed by a weighted update of the previous swd.hl.
291
            // As weights here we use stem number, as the processes here pertain individual snags
292
            // calculate the transition probability of SWD to downed dead wood
468 werner 293
 
522 werner 294
            double half_life = mHalfLife[i] / climate_factor_re;
295
            double rate = -M_LN2 / half_life; // M_LN2: math. constant
296
 
297
            // higher decay rate for the class with smallest diameters
298
            if (i==0)
299
                rate*=2.;
300
 
523 werner 301
            double transfer = 1. - exp(rate);
522 werner 302
 
468 werner 303
            // calculate flow to soil pool...
522 werner 304
            mSWDtoSoil += mSWD[i] * transfer;
305
            mRefractoryFlux += mSWD[i] * transfer;
306
            mSWD[i] *= (1.-transfer); // reduce pool
468 werner 307
            // calculate the stem number of remaining snags
522 werner 308
            mNumberOfSnags[i] = mNumberOfSnags[i] * (1. - transfer);
523 werner 309
 
310
            mTimeSinceDeath[i] += 1.;
522 werner 311
            // if stems<0.5, empty the whole cohort into DWD, i.e. release the last bit of C and N and clear the stats
312
            // also, if the Carbon of an average snag is less than 10% of the original average tree
313
            // (derived from allometries for the three diameter classes), the whole cohort is emptied out to DWD
314
            if (mNumberOfSnags[i] < 0.5 || mSWD[i].C / mNumberOfSnags[i] < mCarbonThreshold[i]) {
315
                // clear the pool: add the rest to the soil, clear statistics of the pool
468 werner 316
                mRefractoryFlux += mSWD[i];
522 werner 317
                mSWDtoSoil += mSWD[i];
468 werner 318
                mSWD[i].clear();
522 werner 319
                mAvgDbh[i] = 0.;
320
                mAvgHeight[i] = 0.;
321
                mAvgVolume[i] = 0.;
322
                mKSW[i] = 0.;
323
                mCurrentKSW[i] = 0.;
324
                mHalfLife[i] = 0.;
325
                mTimeSinceDeath[i] = 0.;
468 werner 326
            }
522 werner 327
 
468 werner 328
        }
522 werner 329
 
468 werner 330
    }
522 werner 331
    // total carbon in the snag-container on the RU *after* processing is the content of the
475 werner 332
    // standing woody debris pools + the branches
333
    mTotalSnagCarbon = mSWD[0].C + mSWD[1].C + mSWD[2].C +
540 werner 334
                       mOtherWood[0].C + mOtherWood[1].C + mOtherWood[2].C + mOtherWood[3].C + mOtherWood[4].C;
587 werner 335
    mTotalSWD = mSWD[0] + mSWD[1] + mSWD[2];
336
    mTotalOther = mOtherWood[0] + mOtherWood[1] + mOtherWood[2] + mOtherWood[3] + mOtherWood[4];
468 werner 337
}
338
 
339
/// foliage and fineroot litter is transferred during tree growth.
588 werner 340
void Snag::addTurnoverLitter(const Species *species, const double litter_foliage, const double litter_fineroot)
468 werner 341
{
588 werner 342
    mLabileFlux.addBiomass(litter_foliage, species->cnFoliage(), species->snagKyl());
343
    mLabileFlux.addBiomass(litter_fineroot, species->cnFineroot(), species->snagKyl());
1160 werner 344
    DBGMODE(
345
    if (isnan(mLabileFlux.C))
346
        qDebug("Snag::addTurnoverLitter: NaN");
347
                );
468 werner 348
}
349
 
595 werner 350
void Snag::addTurnoverWood(const Species *species, const double woody_biomass)
351
{
352
    mRefractoryFlux.addBiomass(woody_biomass, species->cnWood(), species->snagKyr());
1160 werner 353
    DBGMODE(
354
    if (isnan(mRefractoryFlux.C))
355
        qDebug("Snag::addTurnoverWood: NaN");
356
                );
357
 
595 werner 358
}
359
 
713 werner 360
 
361
/** process the remnants of a single tree.
362
    The part of the stem / branch not covered by snag/soil fraction is removed from the system (e.g. harvest, fire)
363
  @param tree the tree to process
364
  @param stem_to_snag fraction (0..1) of the stem biomass that should be moved to a standing snag
365
  @param stem_to_soil fraction (0..1) of the stem biomass that should go directly to the soil
366
  @param branch_to_snag fraction (0..1) of the branch biomass that should be moved to a standing snag
367
  @param branch_to_soil fraction (0..1) of the branch biomass that should go directly to the soil
368
  @param foliage_to_soil fraction (0..1) of the foliage biomass that should go directly to the soil
369
 
370
*/
371
void Snag::addBiomassPools(const Tree *tree,
372
                           const double stem_to_snag, const double stem_to_soil,
373
                           const double branch_to_snag, const double branch_to_soil,
374
                           const double foliage_to_soil)
468 werner 375
{
528 werner 376
    const Species *species = tree->species();
468 werner 377
 
713 werner 378
    double branch_biomass = tree->biomassBranch();
379
    // fine roots go to the labile pool
380
    mLabileFlux.addBiomass(tree->biomassFineRoot(), species->cnFineroot(), species->snagKyl());
468 werner 381
 
713 werner 382
    // a part of the foliage goes to the soil
383
    mLabileFlux.addBiomass(tree->biomassFoliage() * foliage_to_soil, species->cnFoliage(), species->snagKyl());
384
 
385
    //coarse roots and a part of branches are equally distributed over five years:
386
    double biomass_rest = (tree->biomassCoarseRoot() + branch_to_snag*branch_biomass) * 0.2;
468 werner 387
    for (int i=0;i<5; i++)
713 werner 388
        mOtherWood[i].addBiomass(biomass_rest, species->cnWood(), species->snagKyr());
468 werner 389
 
713 werner 390
    // the other part of the branches goes directly to the soil
391
    mRefractoryFlux.addBiomass(branch_biomass*branch_to_soil, species->cnWood(), species->snagKyr() );
392
    // a part of the stem wood goes directly to the soil
393
    mRefractoryFlux.addBiomass(tree->biomassStem()*stem_to_soil, species->cnWood(), species->snagKyr() );
394
 
395
    // just for book-keeping: keep track of all inputs of branches / roots / swd into the "snag" pools
396
    mTotalIn.addBiomass(tree->biomassBranch()*branch_to_snag + tree->biomassCoarseRoot() + tree->biomassStem()*stem_to_snag, species->cnWood());
468 werner 397
    // stem biomass is transferred to the standing woody debris pool (SWD), increase stem number of pool
522 werner 398
    int pi = poolIndex(tree->dbh()); // get right transfer pool
399
 
713 werner 400
    if (stem_to_snag>0.) {
401
        // update statistics - stemnumber-weighted averages
402
        // note: here the calculations are repeated for every died trees (i.e. consecutive weighting ... but delivers the same results)
403
        double p_old = mNumberOfSnags[pi] / (mNumberOfSnags[pi] + 1); // weighting factor for state vars (based on stem numbers)
404
        double p_new = 1. / (mNumberOfSnags[pi] + 1); // weighting factor for added tree (p_old + p_new = 1).
405
        mAvgDbh[pi] = mAvgDbh[pi]*p_old + tree->dbh()*p_new;
406
        mAvgHeight[pi] = mAvgHeight[pi]*p_old + tree->height()*p_new;
407
        mAvgVolume[pi] = mAvgVolume[pi]*p_old + tree->volume()*p_new;
408
        mTimeSinceDeath[pi] = mTimeSinceDeath[pi]*p_old + 1.*p_new;
409
        mHalfLife[pi] = mHalfLife[pi]*p_old + species->snagHalflife()* p_new;
522 werner 410
 
713 werner 411
        // average the decay rate (ksw); this is done based on the carbon content
412
        // aggregate all trees that die in the current year (and save weighted decay rates to CurrentKSW)
413
        p_old = mToSWD[pi].C / (mToSWD[pi].C + tree->biomassStem()* biomassCFraction);
414
        p_new =tree->biomassStem()* biomassCFraction / (mToSWD[pi].C + tree->biomassStem()* biomassCFraction);
415
        mCurrentKSW[pi] = mCurrentKSW[pi]*p_old + species->snagKsw() * p_new;
416
        mNumberOfSnags[pi]++;
417
    }
523 werner 418
 
713 werner 419
    // finally add the biomass of the stem to the standing snag pool
534 werner 420
    CNPool &to_swd = mToSWD[pi];
713 werner 421
    to_swd.addBiomass(tree->biomassStem()*stem_to_snag, species->cnWood(), species->snagKyr());
422
 
423
    // the biomass that is not routed to snags or directly to the soil
424
    // is removed from the system (to atmosphere or harvested)
425
    mTotalToExtern.addBiomass(tree->biomassFoliage()* (1. - foliage_to_soil) +
426
                              branch_biomass*(1. - branch_to_snag - branch_to_soil) +
427
                              tree->biomassStem()*(1. - stem_to_snag - stem_to_soil), species->cnWood());
428
 
468 werner 429
}
430
 
713 werner 431
 
432
/// after the death of the tree the five biomass compartments are processed.
433
void Snag::addMortality(const Tree *tree)
434
{
435
    addBiomassPools(tree, 1., 0.,  // all stem biomass goes to snag
436
                    1., 0.,        // all branch biomass to snag
437
                    1.);           // all foliage to soil
438
 
439
//    const Species *species = tree->species();
440
 
441
//    // immediate flows: 100% of foliage, 100% of fine roots: they go to the labile pool
442
//    mLabileFlux.addBiomass(tree->biomassFoliage(), species->cnFoliage(), tree->species()->snagKyl());
443
//    mLabileFlux.addBiomass(tree->biomassFineRoot(), species->cnFineroot(), tree->species()->snagKyl());
444
 
445
//    // branches and coarse roots are equally distributed over five years:
446
//    double biomass_rest = (tree->biomassBranch()+tree->biomassCoarseRoot()) * 0.2;
447
//    for (int i=0;i<5; i++)
448
//        mOtherWood[i].addBiomass(biomass_rest, species->cnWood(), tree->species()->snagKyr());
449
 
450
//    // just for book-keeping: keep track of all inputs into branches / roots / swd
451
//    mTotalIn.addBiomass(tree->biomassBranch() + tree->biomassCoarseRoot() + tree->biomassStem(), species->cnWood());
452
//    // stem biomass is transferred to the standing woody debris pool (SWD), increase stem number of pool
453
//    int pi = poolIndex(tree->dbh()); // get right transfer pool
454
 
455
//    // update statistics - stemnumber-weighted averages
456
//    // note: here the calculations are repeated for every died trees (i.e. consecutive weighting ... but delivers the same results)
457
//    double p_old = mNumberOfSnags[pi] / (mNumberOfSnags[pi] + 1); // weighting factor for state vars (based on stem numbers)
458
//    double p_new = 1. / (mNumberOfSnags[pi] + 1); // weighting factor for added tree (p_old + p_new = 1).
459
//    mAvgDbh[pi] = mAvgDbh[pi]*p_old + tree->dbh()*p_new;
460
//    mAvgHeight[pi] = mAvgHeight[pi]*p_old + tree->height()*p_new;
461
//    mAvgVolume[pi] = mAvgVolume[pi]*p_old + tree->volume()*p_new;
462
//    mTimeSinceDeath[pi] = mTimeSinceDeath[pi]*p_old + 1.*p_new;
463
//    mHalfLife[pi] = mHalfLife[pi]*p_old + species->snagHalflife()* p_new;
464
 
465
//    // average the decay rate (ksw); this is done based on the carbon content
466
//    // aggregate all trees that die in the current year (and save weighted decay rates to CurrentKSW)
467
//    if (tree->biomassStem()==0)
468
//        throw IException("Snag::addMortality: tree without stem biomass!!");
469
//    p_old = mToSWD[pi].C / (mToSWD[pi].C + tree->biomassStem()* biomassCFraction);
470
//    p_new =tree->biomassStem()* biomassCFraction / (mToSWD[pi].C + tree->biomassStem()* biomassCFraction);
471
//    mCurrentKSW[pi] = mCurrentKSW[pi]*p_old + species->snagKsw() * p_new;
472
//    mNumberOfSnags[pi]++;
473
 
474
//    // finally add the biomass
475
//    CNPool &to_swd = mToSWD[pi];
476
//    to_swd.addBiomass(tree->biomassStem(), species->cnWood(), tree->species()->snagKyr());
477
}
478
 
468 werner 479
/// add residual biomass of 'tree' after harvesting.
1088 werner 480
/// remove_{stem, branch, foliage}_fraction: percentage of biomass compartment that is *removed* by the harvest operation [0..1] (i.e.: not to stay in the system)
528 werner 481
/// records on harvested biomass is collected (mTotalToExtern-pool).
468 werner 482
void Snag::addHarvest(const Tree* tree, const double remove_stem_fraction, const double remove_branch_fraction, const double remove_foliage_fraction )
483
{
713 werner 484
    addBiomassPools(tree,
485
                    0., 1.-remove_stem_fraction, // "remove_stem_fraction" is removed -> the rest goes to soil
486
                    0., 1.-remove_branch_fraction, // "remove_branch_fraction" is removed -> the rest goes directly to the soil
487
                    1.-remove_foliage_fraction); // the rest of foliage is routed to the soil
488
//    const Species *species = tree->species();
468 werner 489
 
713 werner 490
//    // immediate flows: 100% of residual foliage, 100% of fine roots: they go to the labile pool
491
//    mLabileFlux.addBiomass(tree->biomassFoliage() * (1. - remove_foliage_fraction), species->cnFoliage(), tree->species()->snagKyl());
492
//    mLabileFlux.addBiomass(tree->biomassFineRoot(), species->cnFineroot(), tree->species()->snagKyl());
540 werner 493
 
713 werner 494
//    // for branches, add all biomass that remains in the forest to the soil
495
//    mRefractoryFlux.addBiomass(tree->biomassBranch()*(1.-remove_branch_fraction), species->cnWood(), tree->species()->snagKyr());
496
//    // the same treatment for stem residuals
497
//    mRefractoryFlux.addBiomass(tree->biomassStem() * (1. - remove_stem_fraction), species->cnWood(), tree->species()->snagKyr());
468 werner 498
 
713 werner 499
//    // split the corase wood biomass into parts (slower decay)
500
//    double biomass_rest = (tree->biomassCoarseRoot()) * 0.2;
501
//    for (int i=0;i<5; i++)
502
//        mOtherWood[i].addBiomass(biomass_rest, species->cnWood(), tree->species()->snagKyr());
540 werner 503
 
504
 
713 werner 505
//    // for book-keeping...
506
//    mTotalToExtern.addBiomass(tree->biomassFoliage()*remove_foliage_fraction +
507
//                              tree->biomassBranch()*remove_branch_fraction +
508
//                              tree->biomassStem()*remove_stem_fraction, species->cnWood());
468 werner 509
}
510
 
588 werner 511
// add flow from regeneration layer (dead trees) to soil
595 werner 512
void Snag::addToSoil(const Species *species, const CNPair &woody_pool, const CNPair &litter_pool)
588 werner 513
{
514
    mLabileFlux.add(litter_pool, species->snagKyl());
515
    mRefractoryFlux.add(woody_pool, species->snagKyr());
1160 werner 516
    DBGMODE(
517
    if (isnan(mLabileFlux.C) || isnan(mRefractoryFlux.C))
518
        qDebug("Snag::addToSoil: NaN in C Pool");
519
    );
588 werner 520
}
534 werner 521
 
607 werner 522
/// disturbance function: remove the fraction of 'factor' of biomass from the SWD pools; 0: remove nothing, 1: remove all
523
/// biomass removed by this function goes to the atmosphere
524
void Snag::removeCarbon(const double factor)
525
{
526
    // reduce pools of currently standing dead wood and also of pools that are added
527
    // during (previous) management operations of the current year
528
    for (int i=0;i<3;i++) {
609 werner 529
        mTotalToDisturbance += (mSWD[i] + mToSWD[i]) * factor;
607 werner 530
        mSWD[i] *= (1. - factor);
531
        mToSWD[i] *= (1. - factor);
532
    }
534 werner 533
 
607 werner 534
    for (int i=0;i<5;i++) {
609 werner 535
        mTotalToDisturbance += mOtherWood[i]*factor;
607 werner 536
        mOtherWood[i] *= (1. - factor);
537
    }
538
}
539
 
540
 
541
/// cut down swd (and branches) and move to soil pools
542
/// @param factor 0: cut 0%, 1: cut and slash 100% of the wood
543
void Snag::management(const double factor)
544
{
545
    if (factor<0. || factor>1.)
546
        throw IException(QString("Invalid factor in Snag::management: '%1'").arg(factor));
547
    // swd pools
548
    for (int i=0;i<3;i++) {
549
        mSWDtoSoil += mSWD[i] * factor;
1202 werner 550
        mRefractoryFlux += mSWD[i] * factor;
607 werner 551
        mSWD[i] *= (1. - factor);
1202 werner 552
        //mSWDtoSoil += mToSWD[i] * factor;
553
        //mToSWD[i] *= (1. - factor);
607 werner 554
    }
555
    // what to do with the branches: now move also all wood to soil (note: this is note
556
    // very good w.r.t the coarse roots...
557
    for (int i=0;i<5;i++) {
558
        mRefractoryFlux+=mOtherWood[i]*factor;
559
        mOtherWood[i]*=(1. - factor);
560
    }
561
 
562
}
563
 
564