Subversion Repositories public iLand

Rev

Rev 779 | Rev 1088 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1
 
671 werner 2
/********************************************************************************************
3
**    iLand - an individual based forest landscape and disturbance model
4
**    http://iland.boku.ac.at
5
**    Copyright (C) 2009-  Werner Rammer, Rupert Seidl
6
**
7
**    This program is free software: you can redistribute it and/or modify
8
**    it under the terms of the GNU General Public License as published by
9
**    the Free Software Foundation, either version 3 of the License, or
10
**    (at your option) any later version.
11
**
12
**    This program is distributed in the hope that it will be useful,
13
**    but WITHOUT ANY WARRANTY; without even the implied warranty of
14
**    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
**    GNU General Public License for more details.
16
**
17
**    You should have received a copy of the GNU General Public License
18
**    along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
********************************************************************************************/
20
 
468 werner 21
#include "snag.h"
22
#include "tree.h"
23
#include "species.h"
24
#include "globalsettings.h"
25
#include "expression.h"
490 werner 26
// for calculation of climate decomposition
27
#include "resourceunit.h"
28
#include "watercycle.h"
29
#include "climate.h"
541 werner 30
#include "model.h"
468 werner 31
 
32
/** @class Snag
697 werner 33
  @ingroup core
468 werner 34
  Snag deals with carbon / nitrogen fluxes from the forest until the reach soil pools.
490 werner 35
  Snag lives on the level of the ResourceUnit; carbon fluxes from trees enter Snag, and parts of the biomass of snags
468 werner 36
  is subsequently forwarded to the soil sub model.
522 werner 37
  Carbon is stored in three classes (depending on the size)
528 werner 38
  The Snag dynamics class uses the following species parameter:
39
  cnFoliage, cnFineroot, cnWood, snagHalflife, snagKSW
468 werner 40
 
41
  */
42
// static variables
528 werner 43
double Snag::mDBHLower = -1.;
522 werner 44
double Snag::mDBHHigher = 0.;
45
double Snag::mCarbonThreshold[] = {0., 0., 0.};
46
 
534 werner 47
double CNPair::biomassCFraction = biomassCFraction; // get global from globalsettings.h
468 werner 48
 
534 werner 49
/// add biomass and weigh the parameter_value with the current C-content of the pool
50
void CNPool::addBiomass(const double biomass, const double CNratio, const double parameter_value)
51
{
52
    if (biomass==0.)
53
        return;
54
    double new_c = biomass*biomassCFraction;
55
    double p_old = C / (new_c + C);
56
    mParameter = mParameter*p_old + parameter_value*(1.-p_old);
57
    CNPair::addBiomass(biomass, CNratio);
58
}
59
 
60
// increase pool (and weigh the value)
61
void CNPool::operator+=(const CNPool &s)
62
{
63
    if (s.C==0.)
64
        return;
65
    mParameter = parameter(s); // calculate weighted parameter
66
    C+=s.C;
67
    N+=s.N;
68
}
69
 
70
double CNPool::parameter(const CNPool &s) const
71
{
72
    if (s.C==0.)
73
        return parameter();
74
    double p_old = C / (s.C + C);
75
    double result =  mParameter*p_old + s.parameter()*(1.-p_old);
76
    return result;
77
}
78
 
79
 
522 werner 80
void Snag::setupThresholds(const double lower, const double upper)
81
{
82
    if (mDBHLower == lower)
83
        return;
84
    mDBHLower = lower;
85
    mDBHHigher = upper;
86
    mCarbonThreshold[0] = lower / 2.;
87
    mCarbonThreshold[1] = lower + (upper - lower)/2.;
88
    mCarbonThreshold[2] = upper + (upper - lower)/2.;
89
    //# threshold levels for emptying out the dbh-snag-classes
90
    //# derived from Psme woody allometry, converted to C, with a threshold level set to 10%
91
    //# values in kg!
92
    for (int i=0;i<3;i++)
93
        mCarbonThreshold[i] = 0.10568*pow(mCarbonThreshold[i],2.4247)*0.5*0.1;
94
}
95
 
96
 
468 werner 97
Snag::Snag()
98
{
490 werner 99
    mRU = 0;
534 werner 100
    CNPair::setCFraction(biomassCFraction);
468 werner 101
}
102
 
490 werner 103
void Snag::setup( const ResourceUnit *ru)
468 werner 104
{
490 werner 105
    mRU = ru;
106
    mClimateFactor = 0.;
468 werner 107
    // branches
108
    mBranchCounter=0;
109
    for (int i=0;i<3;i++) {
110
        mTimeSinceDeath[i] = 0.;
111
        mNumberOfSnags[i] = 0.;
522 werner 112
        mAvgDbh[i] = 0.;
113
        mAvgHeight[i] = 0.;
114
        mAvgVolume[i] = 0.;
115
        mKSW[i] = 0.;
116
        mCurrentKSW[i] = 0.;
557 werner 117
        mHalfLife[i] = 0.;
468 werner 118
    }
475 werner 119
    mTotalSnagCarbon = 0.;
528 werner 120
    if (mDBHLower<=0)
121
        throw IException("Snag::setupThresholds() not called or called with invalid parameters.");
557 werner 122
 
123
    // Inital values from XML file
124
    XmlHelper xml=GlobalSettings::instance()->settings();
574 werner 125
    double kyr = xml.valueDouble("model.site.youngRefractoryDecompRate", -1);
557 werner 126
    // put carbon of snags to the middle size class
127
    xml.setCurrentNode("model.initialization.snags");
128
    mSWD[1].C = xml.valueDouble(".swdC");
129
    mSWD[1].N = mSWD[1].C / xml.valueDouble(".swdCN", 50.);
130
    mSWD[1].setParameter(kyr);
131
    mKSW[1] = xml.valueDouble(".swdDecompRate");
132
    mNumberOfSnags[1] = xml.valueDouble(".swdCount");
133
    mHalfLife[1] = xml.valueDouble(".swdHalfLife");
134
    // and for the Branch/coarse root pools: split the init value into five chunks
135
    CNPool other(xml.valueDouble(".otherC"), xml.valueDouble(".otherC")/xml.valueDouble(".otherCN", 50.), kyr );
136
 
137
    mTotalSnagCarbon = other.C + mSWD[1].C;
138
 
139
    other *= 0.2;
140
    for (int i=0;i<5;i++)
141
        mOtherWood[i] = other;
468 werner 142
}
143
 
475 werner 144
// debug outputs
145
QList<QVariant> Snag::debugList()
146
{
147
    // list columns
148
    // for three pools
149
    QList<QVariant> list;
150
 
523 werner 151
    // totals
152
    list << mTotalSnagCarbon << mTotalIn.C << mTotalToAtm.C << mSWDtoSoil.C << mSWDtoSoil.N;
477 werner 153
    // fluxes to labile soil pool and to refractory soil pool
524 werner 154
    list << mLabileFlux.C << mLabileFlux.N << mRefractoryFlux.C << mRefractoryFlux.N;
475 werner 155
 
156
    for (int i=0;i<3;i++) {
157
        // pools "swdx_c", "swdx_n", "swdx_count", "swdx_tsd", "toswdx_c", "toswdx_n"
158
        list << mSWD[i].C << mSWD[i].N << mNumberOfSnags[i] << mTimeSinceDeath[i] << mToSWD[i].C << mToSWD[i].N;
524 werner 159
        list << mAvgDbh[i] << mAvgHeight[i] << mAvgVolume[i];
475 werner 160
    }
161
 
540 werner 162
    // branch/coarse wood pools (5 yrs)
163
    for (int i=0;i<5;i++) {
164
        list << mOtherWood[i].C << mOtherWood[i].N;
165
    }
166
//    list << mOtherWood[mBranchCounter].C << mOtherWood[mBranchCounter].N
167
//            << mOtherWood[(mBranchCounter+1)%5].C << mOtherWood[(mBranchCounter+1)%5].N
168
//            << mOtherWood[(mBranchCounter+2)%5].C << mOtherWood[(mBranchCounter+2)%5].N
169
//            << mOtherWood[(mBranchCounter+3)%5].C << mOtherWood[(mBranchCounter+3)%5].N
170
//            << mOtherWood[(mBranchCounter+4)%5].C << mOtherWood[(mBranchCounter+4)%5].N;
475 werner 171
    return list;
172
}
173
 
713 werner 174
 
468 werner 175
void Snag::newYear()
176
{
177
    for (int i=0;i<3;i++) {
178
        mToSWD[i].clear(); // clear transfer pools to standing-woody-debris
522 werner 179
        mCurrentKSW[i] = 0.;
468 werner 180
    }
181
    mLabileFlux.clear();
182
    mRefractoryFlux.clear();
476 werner 183
    mTotalToAtm.clear();
184
    mTotalToExtern.clear();
609 werner 185
    mTotalToDisturbance.clear();
476 werner 186
    mTotalIn.clear();
477 werner 187
    mSWDtoSoil.clear();
468 werner 188
}
189
 
490 werner 190
/// calculate the dynamic climate modifier for decomposition 're'
522 werner 191
/// calculation is done on the level of ResourceUnit because the water content per day is needed.
490 werner 192
double Snag::calculateClimateFactors()
193
{
770 werner 194
    // the calculation of climate factors requires calculated evapotranspiration. In cases without vegetation (trees or saplings)
195
    // we have to trigger the water cycle calculation for ourselves [ the waterCycle checks if it has already been run in a year and doesn't run twice in that case ]
196
    const_cast<WaterCycle*>(mRU->waterCycle())->run();
490 werner 197
    double ft, fw;
198
    double f_sum = 0.;
552 werner 199
    int iday=0;
553 werner 200
    // calculate the water-factor for each month (see Adair et al 2008)
201
    double fw_month[12];
202
    double ratio;
203
    for (int m=0;m<12;m++) {
562 werner 204
        if (mRU->waterCycle()->referenceEvapotranspiration()[m]>0.)
205
            ratio = mRU->climate()->precipitationMonth()[m] /  mRU->waterCycle()->referenceEvapotranspiration()[m];
553 werner 206
        else
207
            ratio = 0;
208
        fw_month[m] = 1. / (1. + 30.*exp(-8.5*ratio));
564 werner 209
        if (logLevelDebug()) qDebug() <<"month"<< m << "PET" << mRU->waterCycle()->referenceEvapotranspiration()[m] << "prec" <<mRU->climate()->precipitationMonth()[m];
553 werner 210
    }
211
 
552 werner 212
    for (const ClimateDay *day=mRU->climate()->begin(); day!=mRU->climate()->end(); ++day, ++iday)
490 werner 213
    {
214
        ft = exp(308.56*(1./56.02-1./((273.+day->temperature)-227.13)));  // empirical variable Q10 model of Lloyd and Taylor (1994), see also Adair et al. (2008)
553 werner 215
        fw = fw_month[day->month-1];
540 werner 216
 
490 werner 217
        f_sum += ft*fw;
218
    }
219
    // the climate factor is defined as the arithmentic annual mean value
220
    mClimateFactor = f_sum / double(mRU->climate()->daysOfYear());
221
    return mClimateFactor;
222
}
223
 
522 werner 224
/// do the yearly calculation
225
/// see http://iland.boku.ac.at/snag+dynamics
526 werner 226
void Snag::calculateYear()
468 werner 227
{
522 werner 228
    mSWDtoSoil.clear();
925 werner 229
 
230
    // calculate anyway, because also the soil module needs it (and currently one can have Snag and Soil only as a couple)
231
    calculateClimateFactors();
232
    const double climate_factor_re = mClimateFactor;
233
 
477 werner 234
    if (isEmpty()) // nothing to do
475 werner 235
        return;
236
 
468 werner 237
    // process branches: every year one of the five baskets is emptied and transfered to the refractory soil pool
540 werner 238
    mRefractoryFlux+=mOtherWood[mBranchCounter];
239
 
240
    mOtherWood[mBranchCounter].clear();
468 werner 241
    mBranchCounter= (mBranchCounter+1) % 5; // increase index, roll over to 0.
540 werner 242
    // decay of branches/coarse roots
243
    for (int i=0;i<5;i++) {
244
        if (mOtherWood[i].C>0.) {
245
            double survive_rate = exp(- climate_factor_re * mOtherWood[i].parameter() ); // parameter: the "kyr" value...
246
            mOtherWood[i].C *= survive_rate;
247
        }
248
    }
468 werner 249
 
250
    // process standing snags.
251
    // the input of the current year is in the mToSWD-Pools
252
    for (int i=0;i<3;i++) {
253
 
522 werner 254
        // update the swd-pool with this years' input
255
        if (!mToSWD[i].isEmpty()) {
256
            // update decay rate (apply average yearly input to the state parameters)
257
            mKSW[i] = mKSW[i]*(mSWD[i].C/(mSWD[i].C+mToSWD[i].C)) + mCurrentKSW[i]*(mToSWD[i].C/(mSWD[i].C+mToSWD[i].C));
258
            //move content to the SWD pool
259
            mSWD[i] += mToSWD[i];
260
        }
475 werner 261
 
522 werner 262
        if (mSWD[i].C > 0) {
263
            // reduce the Carbon (note: the N stays, thus the CN ratio changes)
264
            // use the decay rate that is derived as a weighted average of all standing woody debris
523 werner 265
            double survive_rate = exp(-mKSW[i] *climate_factor_re * 1. ); // 1: timestep
266
            mTotalToAtm.C += mSWD[i].C * (1. - survive_rate);
267
            mSWD[i].C *= survive_rate;
468 werner 268
 
522 werner 269
            // transition to downed woody debris
270
            // update: use negative exponential decay, species parameter: half-life
271
            // modified for the climatic effect on decomposition, i.e. if decomp is slower, snags stand longer and vice versa
272
            // this is loosely oriented on Standcarb2 (http://andrewsforest.oregonstate.edu/pubs/webdocs/models/standcarb2.htm),
273
            // where lag times for cohort transitions are linearly modified with re although here individual good or bad years have
274
            // an immediate effect, the average climatic influence should come through (and it is inherently transient)
275
            // note that swd.hl is species-specific, and thus a weighted average over the species in the input (=mortality)
276
            // needs to be calculated, followed by a weighted update of the previous swd.hl.
277
            // As weights here we use stem number, as the processes here pertain individual snags
278
            // calculate the transition probability of SWD to downed dead wood
468 werner 279
 
522 werner 280
            double half_life = mHalfLife[i] / climate_factor_re;
281
            double rate = -M_LN2 / half_life; // M_LN2: math. constant
282
 
283
            // higher decay rate for the class with smallest diameters
284
            if (i==0)
285
                rate*=2.;
286
 
523 werner 287
            double transfer = 1. - exp(rate);
522 werner 288
 
468 werner 289
            // calculate flow to soil pool...
522 werner 290
            mSWDtoSoil += mSWD[i] * transfer;
291
            mRefractoryFlux += mSWD[i] * transfer;
292
            mSWD[i] *= (1.-transfer); // reduce pool
468 werner 293
            // calculate the stem number of remaining snags
522 werner 294
            mNumberOfSnags[i] = mNumberOfSnags[i] * (1. - transfer);
523 werner 295
 
296
            mTimeSinceDeath[i] += 1.;
522 werner 297
            // if stems<0.5, empty the whole cohort into DWD, i.e. release the last bit of C and N and clear the stats
298
            // also, if the Carbon of an average snag is less than 10% of the original average tree
299
            // (derived from allometries for the three diameter classes), the whole cohort is emptied out to DWD
300
            if (mNumberOfSnags[i] < 0.5 || mSWD[i].C / mNumberOfSnags[i] < mCarbonThreshold[i]) {
301
                // clear the pool: add the rest to the soil, clear statistics of the pool
468 werner 302
                mRefractoryFlux += mSWD[i];
522 werner 303
                mSWDtoSoil += mSWD[i];
468 werner 304
                mSWD[i].clear();
522 werner 305
                mAvgDbh[i] = 0.;
306
                mAvgHeight[i] = 0.;
307
                mAvgVolume[i] = 0.;
308
                mKSW[i] = 0.;
309
                mCurrentKSW[i] = 0.;
310
                mHalfLife[i] = 0.;
311
                mTimeSinceDeath[i] = 0.;
468 werner 312
            }
522 werner 313
 
468 werner 314
        }
522 werner 315
 
468 werner 316
    }
522 werner 317
    // total carbon in the snag-container on the RU *after* processing is the content of the
475 werner 318
    // standing woody debris pools + the branches
319
    mTotalSnagCarbon = mSWD[0].C + mSWD[1].C + mSWD[2].C +
540 werner 320
                       mOtherWood[0].C + mOtherWood[1].C + mOtherWood[2].C + mOtherWood[3].C + mOtherWood[4].C;
587 werner 321
    mTotalSWD = mSWD[0] + mSWD[1] + mSWD[2];
322
    mTotalOther = mOtherWood[0] + mOtherWood[1] + mOtherWood[2] + mOtherWood[3] + mOtherWood[4];
468 werner 323
}
324
 
325
/// foliage and fineroot litter is transferred during tree growth.
588 werner 326
void Snag::addTurnoverLitter(const Species *species, const double litter_foliage, const double litter_fineroot)
468 werner 327
{
588 werner 328
    mLabileFlux.addBiomass(litter_foliage, species->cnFoliage(), species->snagKyl());
329
    mLabileFlux.addBiomass(litter_fineroot, species->cnFineroot(), species->snagKyl());
468 werner 330
}
331
 
595 werner 332
void Snag::addTurnoverWood(const Species *species, const double woody_biomass)
333
{
334
    mRefractoryFlux.addBiomass(woody_biomass, species->cnWood(), species->snagKyr());
335
}
336
 
713 werner 337
 
338
/** process the remnants of a single tree.
339
    The part of the stem / branch not covered by snag/soil fraction is removed from the system (e.g. harvest, fire)
340
  @param tree the tree to process
341
  @param stem_to_snag fraction (0..1) of the stem biomass that should be moved to a standing snag
342
  @param stem_to_soil fraction (0..1) of the stem biomass that should go directly to the soil
343
  @param branch_to_snag fraction (0..1) of the branch biomass that should be moved to a standing snag
344
  @param branch_to_soil fraction (0..1) of the branch biomass that should go directly to the soil
345
  @param foliage_to_soil fraction (0..1) of the foliage biomass that should go directly to the soil
346
 
347
*/
348
void Snag::addBiomassPools(const Tree *tree,
349
                           const double stem_to_snag, const double stem_to_soil,
350
                           const double branch_to_snag, const double branch_to_soil,
351
                           const double foliage_to_soil)
468 werner 352
{
528 werner 353
    const Species *species = tree->species();
468 werner 354
 
713 werner 355
    double branch_biomass = tree->biomassBranch();
356
    // fine roots go to the labile pool
357
    mLabileFlux.addBiomass(tree->biomassFineRoot(), species->cnFineroot(), species->snagKyl());
468 werner 358
 
713 werner 359
    // a part of the foliage goes to the soil
360
    mLabileFlux.addBiomass(tree->biomassFoliage() * foliage_to_soil, species->cnFoliage(), species->snagKyl());
361
 
362
    //coarse roots and a part of branches are equally distributed over five years:
363
    double biomass_rest = (tree->biomassCoarseRoot() + branch_to_snag*branch_biomass) * 0.2;
468 werner 364
    for (int i=0;i<5; i++)
713 werner 365
        mOtherWood[i].addBiomass(biomass_rest, species->cnWood(), species->snagKyr());
468 werner 366
 
713 werner 367
    // the other part of the branches goes directly to the soil
368
    mRefractoryFlux.addBiomass(branch_biomass*branch_to_soil, species->cnWood(), species->snagKyr() );
369
    // a part of the stem wood goes directly to the soil
370
    mRefractoryFlux.addBiomass(tree->biomassStem()*stem_to_soil, species->cnWood(), species->snagKyr() );
371
 
372
    // just for book-keeping: keep track of all inputs of branches / roots / swd into the "snag" pools
373
    mTotalIn.addBiomass(tree->biomassBranch()*branch_to_snag + tree->biomassCoarseRoot() + tree->biomassStem()*stem_to_snag, species->cnWood());
468 werner 374
    // stem biomass is transferred to the standing woody debris pool (SWD), increase stem number of pool
522 werner 375
    int pi = poolIndex(tree->dbh()); // get right transfer pool
376
 
713 werner 377
    if (stem_to_snag>0.) {
378
        // update statistics - stemnumber-weighted averages
379
        // note: here the calculations are repeated for every died trees (i.e. consecutive weighting ... but delivers the same results)
380
        double p_old = mNumberOfSnags[pi] / (mNumberOfSnags[pi] + 1); // weighting factor for state vars (based on stem numbers)
381
        double p_new = 1. / (mNumberOfSnags[pi] + 1); // weighting factor for added tree (p_old + p_new = 1).
382
        mAvgDbh[pi] = mAvgDbh[pi]*p_old + tree->dbh()*p_new;
383
        mAvgHeight[pi] = mAvgHeight[pi]*p_old + tree->height()*p_new;
384
        mAvgVolume[pi] = mAvgVolume[pi]*p_old + tree->volume()*p_new;
385
        mTimeSinceDeath[pi] = mTimeSinceDeath[pi]*p_old + 1.*p_new;
386
        mHalfLife[pi] = mHalfLife[pi]*p_old + species->snagHalflife()* p_new;
522 werner 387
 
713 werner 388
        // average the decay rate (ksw); this is done based on the carbon content
389
        // aggregate all trees that die in the current year (and save weighted decay rates to CurrentKSW)
390
        p_old = mToSWD[pi].C / (mToSWD[pi].C + tree->biomassStem()* biomassCFraction);
391
        p_new =tree->biomassStem()* biomassCFraction / (mToSWD[pi].C + tree->biomassStem()* biomassCFraction);
392
        mCurrentKSW[pi] = mCurrentKSW[pi]*p_old + species->snagKsw() * p_new;
393
        mNumberOfSnags[pi]++;
394
    }
523 werner 395
 
713 werner 396
    // finally add the biomass of the stem to the standing snag pool
534 werner 397
    CNPool &to_swd = mToSWD[pi];
713 werner 398
    to_swd.addBiomass(tree->biomassStem()*stem_to_snag, species->cnWood(), species->snagKyr());
399
 
400
    // the biomass that is not routed to snags or directly to the soil
401
    // is removed from the system (to atmosphere or harvested)
402
    mTotalToExtern.addBiomass(tree->biomassFoliage()* (1. - foliage_to_soil) +
403
                              branch_biomass*(1. - branch_to_snag - branch_to_soil) +
404
                              tree->biomassStem()*(1. - stem_to_snag - stem_to_soil), species->cnWood());
405
 
468 werner 406
}
407
 
713 werner 408
 
409
/// after the death of the tree the five biomass compartments are processed.
410
void Snag::addMortality(const Tree *tree)
411
{
412
    addBiomassPools(tree, 1., 0.,  // all stem biomass goes to snag
413
                    1., 0.,        // all branch biomass to snag
414
                    1.);           // all foliage to soil
415
 
416
//    const Species *species = tree->species();
417
 
418
//    // immediate flows: 100% of foliage, 100% of fine roots: they go to the labile pool
419
//    mLabileFlux.addBiomass(tree->biomassFoliage(), species->cnFoliage(), tree->species()->snagKyl());
420
//    mLabileFlux.addBiomass(tree->biomassFineRoot(), species->cnFineroot(), tree->species()->snagKyl());
421
 
422
//    // branches and coarse roots are equally distributed over five years:
423
//    double biomass_rest = (tree->biomassBranch()+tree->biomassCoarseRoot()) * 0.2;
424
//    for (int i=0;i<5; i++)
425
//        mOtherWood[i].addBiomass(biomass_rest, species->cnWood(), tree->species()->snagKyr());
426
 
427
//    // just for book-keeping: keep track of all inputs into branches / roots / swd
428
//    mTotalIn.addBiomass(tree->biomassBranch() + tree->biomassCoarseRoot() + tree->biomassStem(), species->cnWood());
429
//    // stem biomass is transferred to the standing woody debris pool (SWD), increase stem number of pool
430
//    int pi = poolIndex(tree->dbh()); // get right transfer pool
431
 
432
//    // update statistics - stemnumber-weighted averages
433
//    // note: here the calculations are repeated for every died trees (i.e. consecutive weighting ... but delivers the same results)
434
//    double p_old = mNumberOfSnags[pi] / (mNumberOfSnags[pi] + 1); // weighting factor for state vars (based on stem numbers)
435
//    double p_new = 1. / (mNumberOfSnags[pi] + 1); // weighting factor for added tree (p_old + p_new = 1).
436
//    mAvgDbh[pi] = mAvgDbh[pi]*p_old + tree->dbh()*p_new;
437
//    mAvgHeight[pi] = mAvgHeight[pi]*p_old + tree->height()*p_new;
438
//    mAvgVolume[pi] = mAvgVolume[pi]*p_old + tree->volume()*p_new;
439
//    mTimeSinceDeath[pi] = mTimeSinceDeath[pi]*p_old + 1.*p_new;
440
//    mHalfLife[pi] = mHalfLife[pi]*p_old + species->snagHalflife()* p_new;
441
 
442
//    // average the decay rate (ksw); this is done based on the carbon content
443
//    // aggregate all trees that die in the current year (and save weighted decay rates to CurrentKSW)
444
//    if (tree->biomassStem()==0)
445
//        throw IException("Snag::addMortality: tree without stem biomass!!");
446
//    p_old = mToSWD[pi].C / (mToSWD[pi].C + tree->biomassStem()* biomassCFraction);
447
//    p_new =tree->biomassStem()* biomassCFraction / (mToSWD[pi].C + tree->biomassStem()* biomassCFraction);
448
//    mCurrentKSW[pi] = mCurrentKSW[pi]*p_old + species->snagKsw() * p_new;
449
//    mNumberOfSnags[pi]++;
450
 
451
//    // finally add the biomass
452
//    CNPool &to_swd = mToSWD[pi];
453
//    to_swd.addBiomass(tree->biomassStem(), species->cnWood(), tree->species()->snagKyr());
454
}
455
 
468 werner 456
/// add residual biomass of 'tree' after harvesting.
522 werner 457
/// remove_{stem, branch, foliage}_fraction: percentage of biomass compartment that is *removed* by the harvest operation (i.e.: not to stay in the system)
528 werner 458
/// records on harvested biomass is collected (mTotalToExtern-pool).
468 werner 459
void Snag::addHarvest(const Tree* tree, const double remove_stem_fraction, const double remove_branch_fraction, const double remove_foliage_fraction )
460
{
713 werner 461
    addBiomassPools(tree,
462
                    0., 1.-remove_stem_fraction, // "remove_stem_fraction" is removed -> the rest goes to soil
463
                    0., 1.-remove_branch_fraction, // "remove_branch_fraction" is removed -> the rest goes directly to the soil
464
                    1.-remove_foliage_fraction); // the rest of foliage is routed to the soil
465
//    const Species *species = tree->species();
468 werner 466
 
713 werner 467
//    // immediate flows: 100% of residual foliage, 100% of fine roots: they go to the labile pool
468
//    mLabileFlux.addBiomass(tree->biomassFoliage() * (1. - remove_foliage_fraction), species->cnFoliage(), tree->species()->snagKyl());
469
//    mLabileFlux.addBiomass(tree->biomassFineRoot(), species->cnFineroot(), tree->species()->snagKyl());
540 werner 470
 
713 werner 471
//    // for branches, add all biomass that remains in the forest to the soil
472
//    mRefractoryFlux.addBiomass(tree->biomassBranch()*(1.-remove_branch_fraction), species->cnWood(), tree->species()->snagKyr());
473
//    // the same treatment for stem residuals
474
//    mRefractoryFlux.addBiomass(tree->biomassStem() * (1. - remove_stem_fraction), species->cnWood(), tree->species()->snagKyr());
468 werner 475
 
713 werner 476
//    // split the corase wood biomass into parts (slower decay)
477
//    double biomass_rest = (tree->biomassCoarseRoot()) * 0.2;
478
//    for (int i=0;i<5; i++)
479
//        mOtherWood[i].addBiomass(biomass_rest, species->cnWood(), tree->species()->snagKyr());
540 werner 480
 
481
 
713 werner 482
//    // for book-keeping...
483
//    mTotalToExtern.addBiomass(tree->biomassFoliage()*remove_foliage_fraction +
484
//                              tree->biomassBranch()*remove_branch_fraction +
485
//                              tree->biomassStem()*remove_stem_fraction, species->cnWood());
468 werner 486
}
487
 
588 werner 488
// add flow from regeneration layer (dead trees) to soil
595 werner 489
void Snag::addToSoil(const Species *species, const CNPair &woody_pool, const CNPair &litter_pool)
588 werner 490
{
491
    mLabileFlux.add(litter_pool, species->snagKyl());
492
    mRefractoryFlux.add(woody_pool, species->snagKyr());
493
}
534 werner 494
 
607 werner 495
/// disturbance function: remove the fraction of 'factor' of biomass from the SWD pools; 0: remove nothing, 1: remove all
496
/// biomass removed by this function goes to the atmosphere
497
void Snag::removeCarbon(const double factor)
498
{
499
    // reduce pools of currently standing dead wood and also of pools that are added
500
    // during (previous) management operations of the current year
501
    for (int i=0;i<3;i++) {
609 werner 502
        mTotalToDisturbance += (mSWD[i] + mToSWD[i]) * factor;
607 werner 503
        mSWD[i] *= (1. - factor);
504
        mToSWD[i] *= (1. - factor);
505
    }
534 werner 506
 
607 werner 507
    for (int i=0;i<5;i++) {
609 werner 508
        mTotalToDisturbance += mOtherWood[i]*factor;
607 werner 509
        mOtherWood[i] *= (1. - factor);
510
    }
511
}
512
 
513
 
514
/// cut down swd (and branches) and move to soil pools
515
/// @param factor 0: cut 0%, 1: cut and slash 100% of the wood
516
void Snag::management(const double factor)
517
{
518
    if (factor<0. || factor>1.)
519
        throw IException(QString("Invalid factor in Snag::management: '%1'").arg(factor));
520
    // swd pools
521
    for (int i=0;i<3;i++) {
522
        mSWDtoSoil += mSWD[i] * factor;
523
        mSWD[i] *= (1. - factor);
524
        mSWDtoSoil += mToSWD[i] * factor;
525
        mToSWD[i] *= (1. - factor);
526
    }
527
    // what to do with the branches: now move also all wood to soil (note: this is note
528
    // very good w.r.t the coarse roots...
529
    for (int i=0;i<5;i++) {
530
        mRefractoryFlux+=mOtherWood[i]*factor;
531
        mOtherWood[i]*=(1. - factor);
532
    }
533
 
534
}
535
 
536